A model for evaluating relative gas permeability considering the dynamic occurrence of water in tight reservoirs

被引:0
|
作者
Wang, Zechuan [1 ,2 ,3 ]
Tian, Leng [1 ,2 ,3 ]
Huang, Wenkui [1 ,2 ,3 ]
Chen, Xingshen [4 ]
Xu, Wenxi [1 ,2 ,3 ]
Tang, Chuanyi [5 ]
Chai, Xiaolong [1 ,2 ,3 ]
Zhu, Yuan [1 ,2 ,3 ]
机构
[1] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
[2] China Univ Petr, Inst Petr Engn, Beijing 102249, Peoples R China
[3] China Univ Petr, Res Ctr Nat Gas Geol & Engn, Beijing 102249, Peoples R China
[4] Beijing Petr Machinery Co LTD, Beijing 102206, Peoples R China
[5] Xinjiang Oilfield Co, Baikouquan Oil Prod Plant, PetroChina, Kelamayi 834000, Peoples R China
关键词
Tight sandstone reservoir; Relative gas permeability; Water occurrence state; Pore throat structure; Mathematical model; CAPILLARY BUNDLE MODEL; APPARENT PERMEABILITY; FLOW; SHALE; WETTABILITY; SATURATION; ADSORPTION; THICKNESS; LIMITS; MEDIA;
D O I
10.1016/j.fuel.2024.134240
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The evaluation of relative gas permeability in tight reservoirs has a significant challenge owing to the influence of water. In this work, the pore throat structure has been characterized through a combination of experimental methods and fractal theory. Based on the analysis of the microscopic seepage phenomena of gas and water, a pore network model has been formulated to simplify the actual pore throat. Leveraging the calculation of water film thickness via the Derjaguin-Landau-Verwey-Overbee (DLVO) theory, the traditional capillary bundle model is improved by means of probability theory and mercury injection tests. This model takes into account the twophase seepage characteristics in a more comprehensive manner, thereby quantitatively evaluating the impact of the dynamic presence of water on relative gas permeability at the core scale. The results indicate that the water film saturation in tight reservoirs is below 4%, exerting an influence on gas permeability with an impact rate below 6%. Capillary water that is distributed in the pores governed by small throats under the influence of capillary force substantially contributes to water saturation, and the ensuing crossflow and bypassing flow primarily account for the decline in relative gas permeability. The application of effective methods, including increasing the displacement pressure difference and diminishing the interfacial tension, can reduce the critical movable throat radius and enhance the spread of gas throughout the pores, which is the key to raising relative gas permeability. The constructed evaluation model has certain advantages over the traditional ones in terms of analysis for fluid occurrence states. This enables us to assess measures for enhancing gas permeability within an efficient framework.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] PREDICTED MODEL OF RELATIVE PERMEABILITY CONSIDERING WATER DISTRIBUTION CHARACTERISTICS IN TIGHT SANDSTONE GAS RESERVOIRS
    Fu, Jingang
    Su, Yuliang
    Li, Lei
    Hao, Yongmao
    Wang, Wendong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (01)
  • [2] A relative permeability model considering nanoconfinement and dynamic contact angle effects for tight reservoirs
    Tian, Weibing
    Wu, Keliu
    Chen, Zhangxin
    Gao, Yanling
    Li, Jing
    Wang, Muyuan
    ENERGY, 2022, 258
  • [3] A WATER-GAS RELATIVE PERMEABILITY RELATIONSHIP FOR TIGHT GAS SAND RESERVOIRS
    LEKIA, SDL
    EVANS, RD
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 1990, 112 (04): : 239 - 245
  • [4] A fractal model for gas-water relative permeability in inorganic shale considering water occurrence state
    Yang, Rui
    Ma, Tianran
    Kang, Yulong
    Du, Hongzhou
    Xie, Shuli
    Ma, Depeng
    FUEL, 2025, 381
  • [5] An improved experimental procedure and mathematical model for determining gas-water relative permeability in tight sandstone gas reservoirs
    Zhang, Jianzhong
    Gao, Shusheng
    Wei, Xiong
    Ye, Liyou
    Liu, Huaxun
    Zhu, Wenqing
    Sun, Xiongwei
    Li, Xiaogang
    Zhu, Wentao
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 221
  • [6] A novel model for oil reservoirs considering stress sensitivity and dynamic relative permeability
    Chen, Yirong
    Jiang, Zhixiong
    Yan, Xun
    GEOSYSTEM ENGINEERING, 2024, 27 (05) : 199 - 205
  • [7] Experimental study on the permeability jail range of tight gas reservoirs through the gas-water relative permeability curve
    Gong, Wei
    You, Lijun
    Xu, Jieming
    Kang, Yili
    Zhou, Yang
    FRONTIERS IN PHYSICS, 2022, 10
  • [8] Gas-water relative permeability measurement of high temperature and high pressure tight gas reservoirs
    Fang Jianlong
    Guo Ping
    Xiao Xiangjiao
    Du Jianfen
    Dong Chao
    Xiong Yuming
    Long Fang
    PETROLEUM EXPLORATION AND DEVELOPMENT, 2015, 42 (01) : 92 - 96
  • [9] A New Method to Calculate the Relative Permeability of Oil and Water in Tight Oil Reservoirs by Considering the Nonlinear Flow
    Su, Haibo
    Wang, Duocai
    Zhang, Ping
    An, Yongsheng
    Fu, Yaping
    Lu, Jun
    Huang, Famu
    Zhang, Hong
    Ren, Zhongxing
    Li, Zhuo
    GEOFLUIDS, 2022, 2022
  • [10] ANALYSIS OF PRESSURE-DEPENDENT RELATIVE PERMEABILITY IN PERMEABILITY JAIL OF TIGHT GAS RESERVOIRS AND ITS INFLUENCE ON TIGHT GAS PRODUCTION
    Mo, Fei
    Du, Zhimin
    Peng, Xiaolong
    Liang, Baosheng
    Tang, Yong
    Yue, Ping
    JOURNAL OF POROUS MEDIA, 2019, 22 (13) : 1667 - 1683