High-order fluid-structure interaction in 2D and 3D application to blood flow in arteries

被引:0
|
作者
机构
[1] Chabannes, Vincent
[2] Pena, Gonçalo
[3] 1,Prud'Homme, Christophe
来源
Pena, Gonçalo (gpena@mat.uc.pt) | 1600年 / Elsevier B.V., Netherlands卷 / 246期
关键词
Arbitrary Lagrangian Eulerian - Computational effort - Differential operators - Discretization method - High-order methods - Interior penalties - Numerical approximations - Numerical strategies;
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses the numerical approximation of fluid-structure interaction (FSI) problems through the arbitrary Lagrangian Eulerian (ALE) framework, high-order methods and a Dirichlet-Newmann approach for the coupling. The paper is divided into two main parts. The first part concerns the discretization method for the FSI problem. We introduce an improved ALE map, capable of handling curved geometries in 2D and 3D in a unified manner, that is based on a local differential operator. We also propose a minimal continuous interior penalty (CIP) stabilization term for the fluid discretization that accounts for a smaller computational effort, while stabilizing the flow regime. The second part is dedicated to validating our numerical strategy through a benchmark and some applications to blood flow in arteries. © 2012 Elsevier B.V. All rights reserved.
引用
收藏
相关论文
共 50 条
  • [1] High-order fluid-structure interaction in 2D and 3D application to blood flow in arteries
    Chabannes, Vincent
    Pena, Goncalo
    Prud'homme, Christophe
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 246 : 1 - 9
  • [2] High-order fluid-structure interaction in 2D and 3D application to blood flow in arteries
    Chabannes, Vincent
    Pena, Gonçalo
    Prud'homme, Christophe
    Journal of Computational and Applied Mathematics, 2013, 246 : 1 - 9
  • [3] A 3D non-Newtonian fluid-structure interaction model for blood flow in arteries
    Janela, Joao
    Moura, Alexandra
    Sequeira, Adelia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (09) : 2783 - 2791
  • [4] Absorbing boundary conditions for a 3D non-Newtonian fluid-structure interaction model for blood flow in arteries
    Janela, Joao
    Moura, Alexandra
    Sequeira, Adelia
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2010, 48 (11) : 1332 - 1349
  • [5] On the stability of the coupling of 3d and 1d fluid-structure interaction models for blood flow simulations
    Formaggia, Luca
    Moura, Alexandra
    Nobile, Fabio
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (04): : 743 - 769
  • [6] NUMERICAL SIMULATIONS OF A 3D FLUID-STRUCTURE INTERACTION MODEL FOR BLOOD FLOW IN AN ATHEROSCLEROTIC ARTERY
    Kafi, Oualid
    El Khatib, Nader
    Tiago, Jorge
    Sequeira, Adelia
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2017, 14 (01) : 179 - 193
  • [7] Regularity results in 2D fluid-structure interaction
    Breit, Dominic
    MATHEMATISCHE ANNALEN, 2024, 388 (02) : 1495 - 1538
  • [8] Procedure for 2D fluid-structure interaction simulation
    Zorn, Joshua E.
    Davis, Roger L.
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2019, 13
  • [9] Fluid-structure simulations for a 2D fire application
    Xie, Wei
    Luo, Changsong
    DesJardin, Paul E.
    Proceedings of the ASME Heat Transfer Division 2005, Vol 1, 2005, 376-1 : 421 - 428
  • [10] A numerical 3D fluid-structure interaction model for blood flow in a MRI-based atherosclerotic artery
    El Khatib, Nader
    Kafi, Oualid
    Oliveira, Diana
    Sequeira, Adelia
    Tiago, Jorge
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2023, 18