Linear feedback control for fractional-order chaotic systems with fractional order 1 ≤ q < 2

被引:0
|
作者
机构
[1] Luo, Junhai
来源
Luo, J. (junhai_luo@uestc.edu.cn) | 1600年 / ICIC Express Letters Office卷 / 05期
关键词
Asymptotical stability - Fractional derivatives - Fractional-order chaotic systems - Gronwall inequality - Linear feedback control - Linear state feedback - Linear state feedback control - Mittag-Leffler functions;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates linear state feedback controller design for a class of fractional-order chaotic systems with fractional order 1 ≤ q < 2. The fractional derivative is described in Caputo form. By utilizing Mittag-Leffler function as well as the Gronwall inequality, a linear state feedback controller is designed and a sufficient condition is derived for the asymptotical stability of the fractional-order chaotic system. The proposed method can be used to systems with identical or non-identical fractional orders. Finally simulation results are presented to show that the proposed control method is reliable and easy to construct. © 2014 ICIC International.
引用
收藏
相关论文
共 50 条
  • [1] Delayed feedback control of fractional-order chaotic systems
    Gjurchinovski, A.
    Sandev, T.
    Urumov, V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (44)
  • [2] Synchronization of Incommensurate Fractional-Order Chaotic Systems Based on Linear Feedback Control
    Qi, Fei
    Qu, Jianfeng
    Chai, Yi
    Chen, Liping
    Lopes, Antonio M.
    FRACTAL AND FRACTIONAL, 2022, 6 (04)
  • [3] Suppressing chaos for a class of fractional-order chaotic systems by adaptive integer-order and fractional-order feedback control
    Li, Ruihong
    Li, Wei
    OPTIK, 2015, 126 (21): : 2965 - 2973
  • [4] FRACTIONAL-ORDER ITERATIVE LEARNING CONTROL FOR FRACTIONAL-ORDER LINEAR SYSTEMS
    Li, Yan
    Chen, YangQuan
    Ahn, Hyo-Sung
    ASIAN JOURNAL OF CONTROL, 2011, 13 (01) : 54 - 63
  • [5] SYNCHRONIZATION OF CHAOTIC FRACTIONAL-ORDER SYSTEMS VIA LINEAR CONTROL
    Odibat, Zaid M.
    Corson, Nathalie
    Aziz-Alaoui, M. A.
    Bertelle, Cyrille
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (01): : 81 - 97
  • [6] Projective Synchronization for a Class of Fractional-Order Chaotic Systems with Fractional-Order in the (1, 2) Interval
    Zhou, Ping
    Bai, Rongji
    Zheng, Jiming
    ENTROPY, 2015, 17 (03): : 1123 - 1134
  • [7] Tracking Control for Fractional-order Chaotic Systems
    Zhou, Ping
    Ding, Rui
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 (11) : 973 - 977
  • [8] Predictive control of fractional-order chaotic systems
    Zheng, Yongai
    Ji, Zhilin
    CHAOS SOLITONS & FRACTALS, 2016, 87 : 307 - 313
  • [9] Impulsive control for fractional-order chaotic systems
    Zhong Qi-Shui
    Bao Jing-Fu
    Yu Yong-Bin
    Liao Xiao-Feng
    CHINESE PHYSICS LETTERS, 2008, 25 (08) : 2812 - 2815
  • [10] Generalized fractional-order time-delayed feedback control and synchronization designs for a class of fractional-order chaotic systems
    Soukkou, Ammar
    Boukabou, Abdelkrim
    Goutas, Ahcene
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2018, 47 (07) : 679 - 713