Innovative Diversity Metrics in Hierarchical Population-Based Differential Evolution for PEM Fuel Cell Parameter Optimization

被引:1
|
作者
Khishe, Mohammad [1 ,2 ,3 ]
Jangir, Pradeep [4 ,5 ,6 ]
Arpita [7 ]
Agrawal, Sunilkumar P. [8 ]
Pandya, Sundaram B. [9 ]
Parmar, Anil [9 ]
Abualigah, Laith [10 ]
机构
[1] Imam Khomeini Naval Sci Univ Nowshahr, Dept Elect Engn, Nowshahr, Iran
[2] Yuan Ze Univ, Innovat Ctr Artificial Intelligence Applicat, Taoyuan, Taiwan
[3] Jadara Univ, Res Ctr, Irbid, Jordan
[4] Chandigarh Univ, Univ Ctr Res & Dev, Mohali, India
[5] Graph Era Hill Univ, Graph Era Deemed Univ, Dept CSE, Dehra Dun 248001, Uttarakhand, India
[6] Appl Sci Private Univ, Appl Sci Res Ctr, Amman, Jordan
[7] Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Biosci, Chennai, Tamil Nadu, India
[8] Govt Engn Coll, Dept Elect Engn, Gandhinagar, Gujarat, India
[9] Shri KJ Polytech, Dept Elect Engn, Bharuch, India
[10] Al Al Bayt Univ, Comp Sci Dept, Mafraq, Jordan
关键词
differential evolution; HPDE; parameter estimation; PEMFC; proton exchange membrane fuel cell; STEADY-STATE; ALGORITHM; MODEL; IDENTIFICATION;
D O I
10.1002/eng2.13065
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The optimization of parameters in proton exchange membrane fuel cell (PEMFC) models is essential for enhancing the design and control of fuel cells and is currently a vibrant area of research. This involves a complex, nonlinear, and multivariable numerical optimization challenge. Recently, various metaheuristic approaches have been applied to efficiently identify optimal configurations for PEMFC models, capable of exploring a broad search space to locate ideal solutions promptly. In this study, the recently developed hierarchical population-based differential evolution (HPDE) was employed for parameter optimization of PEMFCs due to its robustness and demonstrated superiority over other optimization algorithms. This research tested the proposed optimization algorithm by identifying parameters for 12 distinct PEMFCs, including BCS 500 W PEMFC, Nedstack 600 W PS6 PEMFC, SR-12500 W PEMFC, H-12 PEMFC, STD 250 W PEMFC, and HORIZON 500 W PEMFC, four variants of 250 W PEMFC, and two variants of H-12 12 W PEMFC. The performance of HPDE was also benchmarked against other advanced evolutionary algorithms (EAs), such as E-QUATRE, iLSHADE, CRADE, L-SHADE, jSO, HARD-DE, LSHADE-cnEpSin, DE, and PCM-DE. Despite its simplicity, the results reveal that HPDE can precisely and swiftly extract the parameters of PEMFC models. Furthermore, the voltage-current (V-I), power-current (P-I), and error characteristics derived from the HPDE algorithm consistently align with both simulated and experimental data across all seven models of PEMFCs. Additionally, HPDE has shown to outperform various versions of DE algorithms, providing superior results.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Adaptive historical population-based differential evolution for PEM fuel cell parameter estimation
    Aljaidi, Mohammad
    Jangir, Pradeep
    Agrawal, Sunilkumar P.
    Pandya, Sundaram B.
    Parmar, Anil
    Anbarkhan, Samar Hussni
    Abualigah, Laith
    IONICS, 2025, 31 (01) : 641 - 674
  • [2] A cooperative strategy-based differential evolution algorithm for robust PEM fuel cell parameter estimation
    Jangir, Pradeep
    Arpita
    Agrawal, Sunilkumar P.
    Pandya, Sundaram B.
    Parmar, Anil
    Kumar, Sumit
    Tejani, Ghanshyam G.
    Abualigah, Laith
    IONICS, 2025, 31 (01) : 703 - 741
  • [3] Dynamic ant colony optimization algorithm for parameter estimation of PEM fuel cell
    Ghosh, Sankhadeep
    Routh, Avijit
    Hembrem, Pintu
    Rahaman, Mehabub
    Ghosh, Avijit
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (02):
  • [4] An accurate parameter estimation of PEM fuel cell using war strategy optimization
    Ayyarao, Tummala. S. L. V.
    Polumahanthi, Nishanth
    Khan, Baseem
    ENERGY, 2024, 290
  • [5] PEM fuel cell modeling using differential evolution
    Chakraborty, Uday K.
    Abbott, Travis E.
    Das, Sajal K.
    ENERGY, 2012, 40 (01) : 387 - 399
  • [6] Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization - Differential Evolution algorithm
    Turgut, Oguz Emrah
    Coban, Mustafa Turhan
    AIN SHAMS ENGINEERING JOURNAL, 2016, 7 (01) : 347 - 360
  • [7] A novel approach for PEM fuel cell parameter estimation using LSHADE-EpSin optimization algorithm
    Fathy, Ahmed
    Abdel Aleem, Shady H. E.
    Rezk, Hegazy
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (05) : 6922 - 6942
  • [8] Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer
    Rezk, Hegazy
    Ferahtia, Seydali
    Djeroui, Ali
    Chouder, Aissa
    Houari, Azeddine
    Machmoum, Mohamed
    Abdelkareem, Mohammad Ali
    ENERGY, 2022, 239
  • [9] HPDE: A dynamic Hierarchical Population based Differential Evolution with novel diversity metric
    Meng, Zhenyu
    Zhang, Quanbin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [10] A Novel Opposition-Based Arithmetic Optimization Algorithm for Parameter Extraction of PEM Fuel Cell
    Sharma, Abhishek
    Khan, Rizwan Ahamad
    Sharma, Abhinav
    Kashyap, Diwakar
    Rajput, Shailendra
    ELECTRONICS, 2021, 10 (22)