Thermal finite element modeling and simulation of a squirrel-cage induction machine

被引:1
作者
Bergfried, Christian [1 ,2 ]
Spaeck-Leigsnering, Yvonne [1 ,2 ]
Seebacher, Roland [3 ]
Eickhoff, Heinrich [4 ]
Muetze, Annette [3 ]
机构
[1] Tech Univ Darmstadt, Inst Accelerator Sci & Electromagnet Fields TEMF, Darmstadt, Germany
[2] Grad Sch Excellence Computat Engn, D-64293 Darmstadt, Germany
[3] Graz Univ Technol, Elect Drives & Machines Inst EAM, Graz, Austria
[4] Silicon Austria Labs GmbH, Graz, Austria
关键词
Finite element method; electrical machines; insulation system; thermal stresses; numerical field simulation; INSULATION; BEHAVIOR;
D O I
10.3233/JAE-230233
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Finite element models of electrical machines allow insights in electrothermal stresses which endanger the insulation system of the machine. This paper presents a thermal finite element model of a 3.7 kW squirrel-cage induction machine. The model resolves the conductors and the surrounding insulation materials in the stator slots. A set of transient thermal scenarios is defined and measured in the machine laboratory. These data are used to assess the finite element model.
引用
收藏
页码:147 / 160
页数:14
相关论文
共 25 条
[1]  
Chapman M., Frost N., Bruetsch R., Insulation systems for rotating low-voltage machines, Conference Record of the 2008 IEEE International Symposium on Electrical Insulation, (2008)
[2]  
Pyrhonen J., Jokinen T., Hrabovcova V., Design Rotating Electrical Machines, (2013)
[3]  
Guide of methods for determining the condition of stator winding insulation and their effectiveness in large motors, Conseil international des grands réseaux électriques, (2013)
[4]  
Madonna V., Giangrande P., Migliazza G., Buticchi G., Galea M., A time-saving approach for the thermal lifetime evaluation of low-voltage electrical machines, IEEE Transactions on Industrial Electronics, 67, 11, pp. 9195-9205, (2020)
[5]  
Nussbaumer P., Vogelsberger M.A., Wolbank T.M., Induction machine insulation health state monitoring based on online switching transient exploitation, IEEE Transactions on Industrial Electronics, 62, 3, pp. 1835-1845, (2015)
[6]  
Montanari G.C., Mazzanti G., Simoni L., Progress in electrothermal life modeling of electrical insulation during the last decades, IEEE Transactions on Electrical Insulation, 9, 5, pp. 730-745, (2002)
[7]  
Elspass L., Schlegel S., Barnklau H., Comparison of methods to detect thermomechanical ageing of the insulation system for rotating high-voltage machines, Proceedings of the Nordic Insulation Symposium, (2022)
[8]  
Boglietti A., Cavagnino A., Staton D., Shanel M., Mueller M., Mejuto C., Evolution and modern approaches for thermal analysis of electrical machines, IEEE Transactions on Industrial Electronics, 56, 3, pp. 871-882, (2009)
[9]  
Mellor P.H., Roberts D., Turner D., Lumped parameter thermal model for electrical machines of TEFC design, IEE Proceedings B (Electric Power Applications), 138, pp. 205-218, (1991)
[10]  
Mezani S., Takorabet N., Laporte B., A combined electromagnetic and thermal analysis of induction motors, IEEE transactions on Magnetics, 41, 5, pp. 1572-1575, (2005)