In-situ quality inspection based on coaxial melt pool images for laser powder bed fusion with depth graph network guided by prior knowledge
被引:0
|
作者:
Zhang, Yingjie
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou, Peoples R ChinaSouth China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou, Peoples R China
Zhang, Yingjie
[1
]
Du, Honghong
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou, Peoples R ChinaSouth China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou, Peoples R China
Du, Honghong
[1
]
Zhao, Kai
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Aerosp Equipments Manufacture Co Ltd, Shanghai, Peoples R ChinaSouth China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou, Peoples R China
Zhao, Kai
[2
]
Gao, Jiali
论文数: 0引用数: 0
h-index: 0
机构:
Univ Shanghai Sci & Technol, Coll Mech Engn, Shanghai, Peoples R ChinaSouth China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou, Peoples R China
Gao, Jiali
[3
]
Peng, Xiaojun
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou, Peoples R ChinaSouth China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou, Peoples R China
Peng, Xiaojun
[1
]
Cheng, Lang
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou, Peoples R ChinaSouth China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou, Peoples R China
Cheng, Lang
[1
]
Fang, Canneng
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou, Peoples R ChinaSouth China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou, Peoples R China
Fang, Canneng
[1
]
Chen, Gang
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou, Peoples R ChinaSouth China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou, Peoples R China
Chen, Gang
[1
]
机构:
[1] South China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou, Peoples R China
[2] Shanghai Aerosp Equipments Manufacture Co Ltd, Shanghai, Peoples R China
[3] Univ Shanghai Sci & Technol, Coll Mech Engn, Shanghai, Peoples R China
Laser power bed fusion;
In-situ monitoring;
Prior knowledge;
Graph neural network;
Explainable artificial intelligence;
HIGH-SPEED;
D O I:
10.1016/j.ymssp.2024.111993
中图分类号:
TH [机械、仪表工业];
学科分类号:
0802 ;
摘要:
In-situ monitoring is crucial for enhancing process quality control in laser powder bed fusion (LPBF). Currently, data-driven approaches in LPBF in-situ quality monitoring have shown remarkable success. However, existing data-driven methods often lack integration with physical knowledge, leading to the opacity of decision-making processes. Research on LPBF knowledgedata mixed-driven modeling is still relatively scarce. To address this gap, this paper proposes a deep graph network method guided by prior knowledge (MK-DGNet) for in-situ quality inspection based on coaxial melt pool images. In the proposed method, prior knowledge is first extracted based on understanding of melt pool. Then, the fusion module is used to place images and knowledge vectors in the same dimensional space. Finally, a deep graph network architecture is elaborately established, taking graph-formatted data as input to learn deep-layer relationships between nodes and edges. The superiority of MK-DGNet is demonstrated using publicly available NIST datasets and self-built CMPQ dataset. Additionally, explainable artificial intelligence methods are employed to explain the basis of network decisions and the effectiveness of prior knowledge. This research provides new methods and perspectives for addressing quality issues in the LPBF process.
机构:
South China Univ Technol, Dept Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Dept Mech & Automot Engn, Guangzhou 510640, Peoples R China
Zhou, Hanxiang
Song, Changhui
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Dept Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Dept Mech & Automot Engn, Guangzhou 510640, Peoples R China
Song, Changhui
Yang, Yongqiang
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Dept Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Dept Mech & Automot Engn, Guangzhou 510640, Peoples R China
机构:
Korea Inst Ind Technol, Gangwon Reg Div, Addit Mfg R&D Grp, Kangnung 25440, South KoreaKorea Inst Ind Technol, Gangwon Reg Div, Addit Mfg R&D Grp, Kangnung 25440, South Korea
Kwon, Ohyung
Kim, Hyung Giun
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Ind Technol, Gangwon Reg Div, Addit Mfg R&D Grp, Kangnung 25440, South KoreaKorea Inst Ind Technol, Gangwon Reg Div, Addit Mfg R&D Grp, Kangnung 25440, South Korea
Kim, Hyung Giun
Kim, Wonrae
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Ind Technol, Gangwon Reg Div, Addit Mfg R&D Grp, Kangnung 25440, South KoreaKorea Inst Ind Technol, Gangwon Reg Div, Addit Mfg R&D Grp, Kangnung 25440, South Korea
Kim, Wonrae
Kim, Gun-Hee
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Ind Technol, Gangwon Reg Div, Addit Mfg R&D Grp, Kangnung 25440, South KoreaKorea Inst Ind Technol, Gangwon Reg Div, Addit Mfg R&D Grp, Kangnung 25440, South Korea
Kim, Gun-Hee
Kim, Kangil
论文数: 0引用数: 0
h-index: 0
机构:
Gwangju Inst Sci & Technol, Sch Elect Engn & Comp Sci, Gwangju 61005, South KoreaKorea Inst Ind Technol, Gangwon Reg Div, Addit Mfg R&D Grp, Kangnung 25440, South Korea