Ultra-High-Performance Fiber-Reinforced Concrete Composites Incorporating Hybridized Polymer Fibers: Resistance to Static and Impact Loads

被引:0
|
作者
Mostofinejad, Davood [1 ]
Moosaie, Iman [1 ]
Eftekhar, Mohamadreza [1 ]
Hesami, Ebrahim [1 ]
机构
[1] Isfahan Univ Technol, Dept Civil Engn, Esfahan, Iran
关键词
environmental and economic impact; flexural strength; hybrid polyvinyl alcohol (PVA)-polypropylene (PP) fibers; impact resistance; steel fiber; toughness; ultra-high-performance fiber-reinforced concrete (UHPFRC); ENGINEERED CEMENTITIOUS COMPOSITES; MECHANICAL-PROPERTIES; FLEXURAL BEHAVIOR; STRENGTH; SYNERGY; DESIGN; UHPFRC; HYFRC;
D O I
10.14359/51742259
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigates the mechanical characteristics (encompassing compressive strength, flexural strength, toughness, and impact resistance) of ultra-high-performance fiber-reinforced concrete (UHPFRC) incorporating polypropylene (PP) and polyvinyl alcohol (PVA) fibers. An experimental program was conducted, based on which the polymer and metallic fibers were used at the same fiber content, and different sets of single and hybrid fiber- reinforced composites were fabricated and tested. Despite the fact that it has been exhibited through previous research that the hybridized PVA-PP fibers do not result in the development of the mechanical characteristics of engineered cementitious composites (ECCs), the UHPC composites incorporating such hybrid fibers show augmented levels of toughness, flexural strength, and resistance to impact loads. A comparison was also made to assess the potentiality of the used fibers in terms of environmental impact and cost. Based on the results, hybridization with PVA and PP fibers leads to remarkable improvement in technical performance and mitigation of the economic and environmental impact of UHPFRC composites.
引用
收藏
页码:5 / 14
页数:10
相关论文
共 50 条
  • [31] Ultra-high-performance fiber-reinforced concrete. Part III: Fresh and hardened properties
    Akeed, Mahmoud H.
    Qaidi, Shaker
    Ahmed, Hemn U.
    Emad, Wael
    Faraj, Rabar H.
    Mohammed, Ahmed S.
    Tayeh, Bassam A.
    Azevedo, Afonso R. G.
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [32] Development of cost effective ultra-high-performance fiber-reinforced concrete using single and hybrid steel fibers
    Yoo, Doo-Yeol
    Kim, Min Jae
    Kim, Sung-Wook
    Park, Jung-Jun
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 150 : 383 - 394
  • [33] Shear Capacity of Glass Fiber-Reinforced Polymer-Reinforced Ultra-High-Performance Concrete Beams without Stirrups
    Kim, Yail J.
    Gebrehiwot, Haftom
    ACI STRUCTURAL JOURNAL, 2023, 120 (02) : 47 - 59
  • [34] Tensile behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) structure with cold joints
    Feng, Zheng
    Li, Chuanxi
    Ke, Lu
    Yoo, Doo-Yeol
    ENGINEERING STRUCTURES, 2022, 273
  • [35] Tensile Behavior of Hybrid Fiber-Reinforced Ultra-High-Performance Concrete
    Li, Jiayue
    Deng, Zongcai
    FRONTIERS IN MATERIALS, 2021, 8
  • [36] Impact Resistance of Reinforced Ultra-High-Performance Concrete Beams with Different Steel Fibers
    Yoo, Doo-Yeol
    Banthia, Nemkumar
    Yoon, Young-Soo
    ACI STRUCTURAL JOURNAL, 2017, 114 (01) : 113 - 124
  • [37] Property Assessment of Hybrid Fiber-Reinforced Ultra-High-Performance Concrete
    Smarzewski, Piotr
    Barnat-Hunek, Danuta
    INTERNATIONAL JOURNAL OF CIVIL ENGINEERING, 2018, 16 (6A) : 593 - 606
  • [38] Synergy performance of hybrid fiber-reinforced ultra-high-performance cementitious composites with low fiber contents
    Tran, Ngoc Thanh
    Nguyen, Duy Hung
    Tran, Tuan Kiet
    Kim, Dong Joo
    Nguyen, Duy-Liem
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2024, 187
  • [39] Assessment of Methods to Derive Tensile Properties of Ultra-High-Performance Fiber-Reinforced Cementitious Composites
    Meszoely, Tamas
    Randl, Norbert
    MATERIALS, 2024, 17 (13)
  • [40] Rehabilitation of overload-damaged reinforced concrete columns using ultra-high-performance fiber-reinforced concrete
    Alasmari, H. A.
    OPEN ENGINEERING, 2023, 13 (01):