Ultra-High-Performance Fiber-Reinforced Concrete Composites Incorporating Hybridized Polymer Fibers: Resistance to Static and Impact Loads

被引:0
|
作者
Mostofinejad, Davood [1 ]
Moosaie, Iman [1 ]
Eftekhar, Mohamadreza [1 ]
Hesami, Ebrahim [1 ]
机构
[1] Isfahan Univ Technol, Dept Civil Engn, Esfahan, Iran
关键词
environmental and economic impact; flexural strength; hybrid polyvinyl alcohol (PVA)-polypropylene (PP) fibers; impact resistance; steel fiber; toughness; ultra-high-performance fiber-reinforced concrete (UHPFRC); ENGINEERED CEMENTITIOUS COMPOSITES; MECHANICAL-PROPERTIES; FLEXURAL BEHAVIOR; STRENGTH; SYNERGY; DESIGN; UHPFRC; HYFRC;
D O I
10.14359/51742259
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigates the mechanical characteristics (encompassing compressive strength, flexural strength, toughness, and impact resistance) of ultra-high-performance fiber-reinforced concrete (UHPFRC) incorporating polypropylene (PP) and polyvinyl alcohol (PVA) fibers. An experimental program was conducted, based on which the polymer and metallic fibers were used at the same fiber content, and different sets of single and hybrid fiber- reinforced composites were fabricated and tested. Despite the fact that it has been exhibited through previous research that the hybridized PVA-PP fibers do not result in the development of the mechanical characteristics of engineered cementitious composites (ECCs), the UHPC composites incorporating such hybrid fibers show augmented levels of toughness, flexural strength, and resistance to impact loads. A comparison was also made to assess the potentiality of the used fibers in terms of environmental impact and cost. Based on the results, hybridization with PVA and PP fibers leads to remarkable improvement in technical performance and mitigation of the economic and environmental impact of UHPFRC composites.
引用
收藏
页码:5 / 14
页数:10
相关论文
共 50 条
  • [21] Influence of polypropylene and steel fibers on the mechanical properties of ultra-high-performance fiber-reinforced geopolymer concrete
    Aisheh, Yazan Issa Abu
    Atrushi, Dawood Sulaiman
    Akeed, Mahmoud H.
    Qaidi, Shaker
    Tayeh, Bassam A.
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [22] Size and geometry dependent tensile behavior of ultra-high-performance fiber-reinforced concrete
    Duy Liem Nguyen
    Ryu, Gum Sung
    Koh, Kyung Taek
    Kim, Dong Joo
    COMPOSITES PART B-ENGINEERING, 2014, 58 : 279 - 292
  • [23] Synergistic response of blending fibers in ultra-high-performance concrete under high rate tensile loads
    Ngoc Thanh Tran
    Kim, Dong Joo
    CEMENT & CONCRETE COMPOSITES, 2017, 78 : 132 - 145
  • [24] Effects of geometry and hybrid ratio of steel and polyethylene fibers on the mechanical performance of ultra-high-performance fiber-reinforced cementitious composites
    Kim, Min-Jae
    Yoo, Doo-Yeol
    Yoon, Young-Soo
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2019, 8 (02): : 1835 - 1848
  • [25] Synergistic use of ultra-high-performance fiber-reinforced concrete (UHPFRC) and carbon fiber-reinforced polymer (CFRP) for improving the impact resistance of concrete-filled steel tubes
    Saini, Dikshant
    Shafei, Behrouz
    STRUCTURAL DESIGN OF TALL AND SPECIAL BUILDINGS, 2023, 32 (11-12)
  • [26] Development of Precast Bridge Slabs in High-Performance Fiber-Reinforced Concrete and Ultra-High-Performance Fiber-Reinforced Concrete
    Lachance, Frederic
    Charron, Jean-Philippe
    Massicotte, Bruno
    ACI STRUCTURAL JOURNAL, 2016, 113 (05) : 929 - 939
  • [27] Effect of age on the compressive strength of ultra-high-performance fiber-reinforced concrete
    Pourbaba, Masoud
    Asefi, Elyar
    Sadaghian, Hamed
    Mirmiran, Amir
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 175 : 402 - 410
  • [28] Mechanical properties of ultra-high-performance fiber-reinforced concrete at cryogenic temperatures
    Kim, Min-Jae
    Kim, Soonho
    Lee, Seul-Kee
    Kim, Jun-Hwi
    Lee, Kangwon
    Yoo, Doo-Yeol
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 157 : 498 - 508
  • [29] Stepped Reinforced Concrete Beams Retrofitted with Carbon Fiber-Reinforced Polymer Sheets and Ultra-High-Performance Concrete
    Kim, Yail J.
    Hassani, Aliasghar
    ACI STRUCTURAL JOURNAL, 2023, 120 (02) : 91 - 104
  • [30] Fracture energy of ultra-high-performance fiber-reinforced concrete at high strain rates
    Ngoc Thanh Tran
    Tuan Kiet Tran
    Jeon, Joong Kyu
    Park, Jun Kil
    Kim, Dong Joo
    CEMENT AND CONCRETE RESEARCH, 2016, 79 : 169 - 184