ZnO-Ta3N5 core-shell nanowire photoanodes with pyridine passivation for efficient and stable photoelectrochemical water-splitting

被引:0
|
作者
Hassan, Mostafa Afifi [1 ,2 ]
Kim, Myeong-Jin [1 ,3 ]
Jung, Wan-Gil [1 ,3 ]
Jo, Yong-Ryun [4 ]
Bae, Hyojung [5 ]
Kang, Soon Hyung [6 ]
Ha, Jun-Seok [7 ]
Moon, Won-Jin [3 ]
Ryu, Sang-Wan [8 ]
Kim, Bong-Joong [1 ]
机构
[1] Gwangju Inst Sci & Technol GIST, Sch Mat Sci & Engn, 123 Cheomdangwagi Ro, Gwangju 61005, South Korea
[2] New Valley Univ, Fac Sci, Dept Phys, El Kharja 72511, Egypt
[3] Korea Basic Sci Inst, Gwangju 61186, South Korea
[4] Gwangju Inst Sci & Technol, Electron Microscopy Lab, GIST Adv Insitute Instrumental Anal GAIA, Gwangju 61005, South Korea
[5] Korea Photon Technol Inst KOPTI, Cheomdanbencheo Ro 108 Beon Gil 9, Gwangju 61007, South Korea
[6] Chonnam Natl Univ, Dept Chem Educ, Gwangju 61186, South Korea
[7] Chonnam Natl Univ, Sch Chem Engn, Gwangju 61186, South Korea
[8] Chonnam Natl Univ, Dept Phys, Gwangju 61186, South Korea
基金
新加坡国家研究基金会;
关键词
ZnO; Core-shell nanowire; Type-II band alignment; Photoelectrochemical water splitting; PHOTOCATALYTIC PERFORMANCE; TA3N5; PHOTOCATALYST; HYDROGEN; FABRICATION; TA2O5; NANOSTRUCTURE; STABILITY; POSITIONS; OXIDATION; FUTURE;
D O I
10.1016/j.jallcom.2024.178190
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Core-shell nanowire (C/S NW) photoanodes for photoelectrochemical water splitting (PEC-WS) are an effective and promising strategy to enhance light harvesting. Here, ZnO/Ta3N5 C/S NWs passivated by pyridine are fabricated for the first time as photoanodes in PEC-WS. The ZnO/Ta3N5/Pyridine C/S NW with an optimal Ta3N5 shell coating, 10 nm thick, exhibit a maximum photocurrent density of 4.46 mA/cm2 at 1.23 V vs. RHE and a photoconversion efficiency of 2.21 % at 0.35 V vs. RHE, representing 12.53-fold and 36.83-fold enhancements, respectively, compared to the ZnO NW. This optimized photoanode displays remarkable stability over 24 hours with 98 % retention, in contrast to the ZnO NW, which fails after 1.5 hours. Furthermore, we confirm that the ZnO/Ta3N5 C/S NW outperforms the ZnO/TaON and ZnO/Ta2O5 C/S NWs in PEC-WS due to the extensively staggered type-II band alignment for efficient charge separation and the smaller bandgap for efficient light absorption. The pyridine grafting produces a surface dipole, creating a built-in electric field at the surface, and passivates the surface defects of Ta3N5, impeding surface charge recombination. Detailed analyses clarifying the band alignments and charge transport/transfer mechanisms of the aforementioned C/S NW photoanodes have been provided.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Impact of Nanostructuring on the Photoelectrochemical Performance of Si/Ta3N5 Nanowire Photoanodes
    Narkeviciute, Ieva
    Jaramillo, Thomas F.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (49): : 27295 - 27302
  • [22] Au@CdS Core-Shell Nanoparticles-Modified ZnO Nanowires Photoanode for Efficient Photoelectrochemical Water Splitting
    Guo, Chun Xian
    Xie, Jiale
    Yang, Hongbin
    Li, Chang Ming
    ADVANCED SCIENCE, 2015, 2 (12):
  • [23] Synthesis of Tungsten Trioxide/Hematite Core-Shell Nanoarrays for Efficient Photoelectrochemical Water Splitting
    Fan, Xiaoli
    Wang, Tao
    Xue, Hairong
    Gao, Bin
    Zhang, Songtao
    Gong, Hao
    Guo, Hu
    Song, Li
    Xia, Wei
    He, Jianping
    CHEMELECTROCHEM, 2019, 6 (02) : 543 - 551
  • [24] Boosting photoelectrochemical water splitting performance of Ta3N5 nanorod array photoanodes by forming a dual co-catalyst shell
    Chen, Runze
    Zhen, Chao
    Yang, Yongqiang
    Sun, Xudong
    Irvine, John T. S.
    Wang, Lianzhou
    Liu, Gang
    Cheng, Hui-Ming
    NANO ENERGY, 2019, 59 : 683 - 688
  • [25] Modified Si nanowire/graphite-like carbon nitride core-shell photoanodes for solar water splitting
    Ning, Minghui
    Chen, Zhen
    Li, Lin
    Meng, Qingguo
    Chen, Zhihong
    Zhang, Yongguang
    Jin, Mingliang
    Zhang, Zhang
    Yuan, Mingzhe
    Wang, Xin
    Zhou, Guofu
    ELECTROCHEMISTRY COMMUNICATIONS, 2018, 87 : 13 - 17
  • [26] Ta3N5 photoanodes for water splitting prepared by sputtering
    Yokoyama, Daisuke
    Hashiguchi, Hiroshi
    Maeda, Kazuhiko
    Minegishi, Tsutomu
    Takata, Tsuyoshi
    Abe, Ryu
    Kubota, Jun
    Domen, Kazunari
    THIN SOLID FILMS, 2011, 519 (07) : 2087 - 2092
  • [27] N-NaTaO3@Ta3N5 Core-Shell Heterojunction with Controlled Interface Boosts Photocatalytic Overall Water Splitting
    Lu, Kejian
    Xue, Fei
    Liu, Feng
    Li, Mengfan
    Fu, Wenlong
    Peng, Hao
    Zhang, Chunyang
    Huang, Jie
    Gao, Ze
    Huang, Hongwen
    Liu, Maochang
    ADVANCED ENERGY MATERIALS, 2023, 13 (28)
  • [28] Omnidirectional Au-embedded ZnO/CdS core/shell nanorods for enhanced photoelectrochemical water-splitting efficiency
    Hieu, H. N.
    Nghia, N., V
    Vuong, N. M.
    Van Bui, H.
    CHEMICAL COMMUNICATIONS, 2020, 56 (28) : 3975 - 3978
  • [29] WO3/Conducting Polymer Heterojunction Photoanodes for Efficient and Stable Photoelectrochemical Water Splitting
    Jeon, Dasom
    Kim, Nayeong
    Bae, Sanghyun
    Han, Yujin
    Ryu, Jungki
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (09) : 8036 - 8044
  • [30] A facile way to synthesize Er2O3@ZnO core-shell nanorods for photoelectrochemical water splitting
    Ye, Kai-Hang
    Wang, Ji-Yu
    Li, Nan
    Liu, Zhao-Qing
    Guo, Shi-Heng
    Guo, Yun-Ping
    Su, Yu-Zhi
    INORGANIC CHEMISTRY COMMUNICATIONS, 2014, 45 : 116 - 119