Optical properties of dentin and enamel by spectroscopic ellipsometry

被引:0
作者
Castilho, Vitória M. [1 ,2 ]
Nunes, Adriana M. [2 ,3 ]
Barroso, Leonardo S. [2 ,3 ]
da Silva, Ladario [1 ,2 ]
Huguenin, José A.O. [1 ,2 ]
机构
[1] Instituto de Ciências Exatas, Universidade Federal Fluminense, Volta Redonda - RJ
[2] Programa de Pós-Graduação em Física, Instituto de Física, Universidade Federal Fluminense, Niterói - RJ
[3] Programa de Graduação e Pós-Graduação em Odontologia, Centro Universitário de Volta Redonda, Volta Redonda, Rio de Janeiro
来源
Optik | 2025年 / 322卷
关键词
Dentin; Enamel; Low absorption; Spectroscopic Ellipsometry;
D O I
10.1016/j.ijleo.2024.172185
中图分类号
学科分类号
摘要
The aim of this study was to explore the extinction coefficient and refractive index of dentin and enamel from human teeth of different anatomical categories and individuals over a wide range of wavelengths. We carried out spectroscopic ellipsometry measurements on dentin and enamel in their natural geometry, investigating three groups of teeth in vitro. The refractive index (n) and extinction coefficient (k) were accessed for the 400−1000nm range. The results indicate that in the infrared we have lower absorption for some specific wavelengths, while the refractive index shows practically constant behavior. We observed a significant decrease in the extinction coefficient in the 815−825nm and 875−885nm ranges, even for different geometries and individuals, indicating that this wavelength range is more for suitable laser interaction with teeth in vivo to avoid heating and teeth damage. In recent years, several optical studies have been proposed for dental diagnosis, including backscattering and transillumination. However, to the best of our knowledge, a detailed study on optical properties such as refractive index n and extinction coefficient k for human dentin and enamel is lacking in the literature. © 2024 Elsevier GmbH
引用
收藏
相关论文
共 45 条
  • [1] Majumder S.K., Ghosh N., Gupta P.K., Support vector machine for optical diagnosis of cancer, J. Biomed. Opt., 10, 2, (2005)
  • [2] Zhou D., Tian F., Tian X., Et al., Diagnostic evaluation of a deep learning model for optical diagnosis of colorectal cancer, Nature Commun., 11, 1, (2020)
  • [3] Satue M., Obis J., Rodrigo M.J., Otin S., Fuertes M.I., Vilades E., Et al., Optical coherence tomography as a biomarker for diagnosis, progression, and prognosis of neurodegenerative diseases, J. Ophthalmol., 2016, (2016)
  • [4] Talu S.D., Optical coherence tomography in the diagnosis and monitoring of retinal diseases, Int. Sch. Res. Notices, 2013, (2013)
  • [5] Saleem M., Bilal M., Anwar S., Rehman A., Ahmed M., Optical diagnosis of dengue virus infection in human blood serum using Raman spectroscopy, Laser Phys. Lett., 10, 3, (2013)
  • [6] Saleem M., Ali S., Khan M.B., Amin A., Bilal M., Nawaz H., Hassan M., Optical diagnosis of hepatitis B virus infection in blood plasma using Raman spectroscopy and chemometric techniques, J. Raman Spectrosc., 51, 7, pp. 1067-1077, (2020)
  • [7] Olsen J., Holmes J., Jemec G.B., Advances in optical coherence tomography in dermatology—a review, J. Biomed. Opt., 23, 4, (2018)
  • [8] Keiser G., Xiong F., Cui Y., Shum P.P., Review of diverse optical fibers used in biomedical research and clinical practice, J. Biomed. Opt., 19, 8, (2014)
  • [9] Raja I.S., Kim C., Oh N., Park J.H., Hong S.W., Kang M.S., Han D.W., Tailoring photobiomodulation to enhance tissue regeneration, Biomaterials, 309, (2024)
  • [10] Bereznai M., Pelsoczi I., Toth Z., Turzo K., Radnai M., Bor Z., Fazekas A., Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material, Biomaterials, 24, 23, pp. 4197-4203, (2003)