Machine learning for online control of particle accelerators

被引:3
作者
Chen, Xiaolong [1 ,2 ,3 ,4 ]
Wang, Zhijun [1 ,3 ,4 ]
He, Yuan [1 ,3 ,4 ]
Zhao, Hong [5 ]
Su, Chunguang [1 ,3 ,4 ]
Liu, Shuhui [1 ,3 ,4 ]
Chen, Weilong [1 ,3 ,4 ]
Zhao, Xiaoying [1 ,3 ,4 ]
Qi, Xin [1 ,3 ,4 ]
Sun, Kunxiang [1 ,3 ,4 ]
Jin, Chao [1 ,3 ,4 ]
Chu, Yimeng [1 ,3 ,4 ]
Zhao, Hongwei [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China
[3] Univ Chinese Acad Sci, Sch Nucl Sci & Technol, Beijing 100049, Peoples R China
[4] Adv Energy Sci & Technonl Guangdong Lab, Huizhou 516000, Peoples R China
[5] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear complex system; adaptive control; machine learning; particle accelerator; simulation to reality; LIGHT; MODEL; SPACE;
D O I
10.1007/s11433-024-2492-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Particle accelerators play a critical role in modern scientific research. However, existing manual beam control methods heavily rely on experienced operators, leading to significant time consumption and potential challenges in managing next-generation accelerators characterized by higher beam current and stronger nonlinear properties. In this paper, we establish a dynamical foundation for designing the online adaptive controller of accelerators using machine learning. This provides a guarantee for dynamic controllability for a class of scientific instruments whose dynamics are described by spatial-temporal equations of motion but only part variables along the instruments under steady states are available. The necessity of using historical time series of beam diagnostic data is emphasised. Key strategies involve also employing a well-established virtual beamline of accelerators, by which various beam calibration scenarios that actual accelerators may encounter are produced. Then the reinforcement learning algorithm is adopted to train the controller with the interaction to the virtual beamline. Finally, the controller is seamlessly transitioned to real ion accelerators, enabling efficient online adaptive control and maintenance. Notably, the controller demonstrates significant robustness, effectively managing beams with diverse charge mass ratios without requiring retraining. Such a controller allows us to achieve the global control within the entire superconducting section of the China Accelerator Facility for Superheavy Elements.
引用
收藏
页数:11
相关论文
共 34 条
  • [21] Nghiem P A P., 2022, P 13 INT PART ACC C
  • [22] Policy gradient methods for free-electron laser and terahertz source optimization and stabilization at the FERMI free-electron laser at Elettra
    O'Shea, F. H.
    Bruchon, N.
    Gaio, G.
    [J]. PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2020, 23 (12)
  • [23] Symplectic multiparticle tracking model for self-consistent space-charge simulation
    Qiang, Ji
    [J]. PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2017, 20 (01):
  • [24] Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning
    Roussel, Ryan
    Gonzalez-Aguilera, Juan Pablo
    Kim, Young-Kee
    Wisniewski, Eric
    Liu, Wanming
    Piot, Philippe
    Power, John
    Hanuka, Adi
    Edelen, Auralee
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [25] Demonstration of Model-Independent Control of the Longitudinal Phase Space of Electron Beams in the Linac-Coherent Light Source with Femtosecond Resolution
    Scheinker, Alexander
    Edelen, Auralee
    Bohler, Dorian
    Emma, Claudio
    Lutman, Alberto
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (04)
  • [26] Schulman J, 2017, Arxiv, DOI [arXiv:1707.06347, 10.48550/arXiv.1707.06347, DOI 10.48550/ARXIV.1707.06347]
  • [27] Automation and control of laser wakefield accelerators using Bayesian optimization
    Shalloo, R. J.
    Dann, S. J. D.
    Gruse, J. -N.
    Underwood, C. I. D.
    Antoine, A. F.
    Arran, C.
    Backhouse, M.
    Baird, C. D.
    Balcazar, M. D.
    Bourgeois, N.
    Cardarelli, J. A.
    Hatfield, P.
    Kang, J.
    Krushelnick, K.
    Mangles, S. P. D.
    Murphy, C. D.
    Lu, N.
    Osterhoff, J.
    Poder, K.
    Rajeev, P. P.
    Ridgers, C. P.
    Rozario, S.
    Selwood, M. P.
    Shahani, A. J.
    Symes, D. R.
    Thomas, A. G. R.
    Thornton, C.
    Najmudin, Z.
    Streeter, M. J. V.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [28] Dynamics-based data science in biology
    Shi, Jifan
    Aihara, Kazuyuki
    Chen, Luonan
    [J]. NATIONAL SCIENCE REVIEW, 2021, 8 (05)
  • [29] Real-time artificial intelligence for accelerator control: A study at the Fermilab Booster
    St John, Jason
    Herwig, Christian
    Kafkes, Diana
    Mitrevski, Jovan
    Pellico, William A.
    Perdue, Gabriel N.
    Quintero-Parra, Andres
    Schupbach, Brian A.
    Seiya, Kiyomi
    Fermi, Nhan Tran
    Schram, Malachi
    Duarte, Javier M.
    Huang, Yunzhi
    Keller, Rachael
    [J]. PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2021, 24 (10)
  • [30] Takens F., 1981, LECT NOTES MATH, P366, DOI [DOI 10.1007/BFB0091924, 10.1007/BFb0091924]