Machine learning for online control of particle accelerators

被引:3
作者
Chen, Xiaolong [1 ,2 ,3 ,4 ]
Wang, Zhijun [1 ,3 ,4 ]
He, Yuan [1 ,3 ,4 ]
Zhao, Hong [5 ]
Su, Chunguang [1 ,3 ,4 ]
Liu, Shuhui [1 ,3 ,4 ]
Chen, Weilong [1 ,3 ,4 ]
Zhao, Xiaoying [1 ,3 ,4 ]
Qi, Xin [1 ,3 ,4 ]
Sun, Kunxiang [1 ,3 ,4 ]
Jin, Chao [1 ,3 ,4 ]
Chu, Yimeng [1 ,3 ,4 ]
Zhao, Hongwei [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China
[3] Univ Chinese Acad Sci, Sch Nucl Sci & Technol, Beijing 100049, Peoples R China
[4] Adv Energy Sci & Technonl Guangdong Lab, Huizhou 516000, Peoples R China
[5] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear complex system; adaptive control; machine learning; particle accelerator; simulation to reality; LIGHT; MODEL; SPACE;
D O I
10.1007/s11433-024-2492-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Particle accelerators play a critical role in modern scientific research. However, existing manual beam control methods heavily rely on experienced operators, leading to significant time consumption and potential challenges in managing next-generation accelerators characterized by higher beam current and stronger nonlinear properties. In this paper, we establish a dynamical foundation for designing the online adaptive controller of accelerators using machine learning. This provides a guarantee for dynamic controllability for a class of scientific instruments whose dynamics are described by spatial-temporal equations of motion but only part variables along the instruments under steady states are available. The necessity of using historical time series of beam diagnostic data is emphasised. Key strategies involve also employing a well-established virtual beamline of accelerators, by which various beam calibration scenarios that actual accelerators may encounter are produced. Then the reinforcement learning algorithm is adopted to train the controller with the interaction to the virtual beamline. Finally, the controller is seamlessly transitioned to real ion accelerators, enabling efficient online adaptive control and maintenance. Notably, the controller demonstrates significant robustness, effectively managing beams with diverse charge mass ratios without requiring retraining. Such a controller allows us to achieve the global control within the entire superconducting section of the China Accelerator Facility for Superheavy Elements.
引用
收藏
页数:11
相关论文
共 34 条
  • [11] Bayesian Optimization of a Free-Electron Laser
    Duris, J.
    Kennedy, D.
    Hanuka, A.
    Shtalenkova, J.
    Edelen, A.
    Baxevanis, P.
    Egger, A.
    Cope, T.
    McIntire, M.
    Ermon, S.
    Ratner, D.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (12)
  • [12] Haarnoja T, 2018, PR MACH LEARN RES, V80
  • [13] Transferring policy of deep reinforcement learning from simulation to reality for robotics
    Ju, Hao
    Juan, Rongshun
    Gomez, Randy
    Nakamura, Keisuke
    Li, Guangliang
    [J]. NATURE MACHINE INTELLIGENCE, 2022, 4 (12) : 1077 - 1087
  • [14] Sample-efficient reinforcement learning for CERN accelerator control
    Kain, Verena
    Hirlander, Simon
    Goddard, Brennan
    Velotti, Francesco Maria
    Porta, Giovanni Zevi Della
    Bruchon, Niky
    Valentino, Gianluca
    [J]. PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2020, 23 (12)
  • [15] Kaiser J, 2022, PR MACH LEARN RES, P10575
  • [16] Tumour irradiation in mice with a laser-accelerated proton beam
    Kroll, Florian
    Brack, Florian-Emanuel
    Bernert, Constantin
    Bock, Stefan
    Bodenstein, Elisabeth
    Bruechner, Kerstin
    Cowan, Thomas E.
    Gaus, Lennart
    Gebhardt, Rene
    Helbig, Uwe
    Karsch, Leonhard
    Kluge, Thomas
    Kraft, Stephan
    Krause, Mechthild
    Lessmann, Elisabeth
    Masood, Umar
    Meister, Sebastian
    Metzkes-Ng, Josefine
    Nossula, Alexej
    Pawelke, Joerg
    Pietzsch, Jens
    Pueschel, Thomas
    Reimold, Marvin
    Rehwald, Martin
    Richter, Christian
    Schlenvoigt, Hans-Peter
    Schramm, Ulrich
    Umlandt, Marvin E. P.
    Ziegler, Tim
    Zeil, Karl
    Beyreuther, Elke
    [J]. NATURE PHYSICS, 2022, 18 (03) : 316 - +
  • [17] Demonstration of Machine Learning-Based Model-Independent Stabilization of Source Properties in Synchrotron Light Sources
    Leemann, S. C.
    Liu, S.
    Hexemer, A.
    Marcus, M. A.
    Melton, C. N.
    Nishimura, H.
    Sun, C.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (19)
  • [18] Randomly distributed embedding making short-term high-dimensional data predictable
    Ma, Huanfei
    Leng, Siyang
    Aihara, Kazuyuki
    Lin, Wei
    Chen, Luonan
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (43) : E9994 - E10002
  • [19] Magee RM, 2023, NAT COMMUN, V14, DOI 10.1038/s41467-023-36655-1
  • [20] Analytical expressions for fringe fields in multipole magnets
    Muratori, B. D.
    Jones, J. K.
    Wolski, A.
    [J]. PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2015, 18 (06):