Machine learning for online control of particle accelerators

被引:3
作者
Chen, Xiaolong [1 ,2 ,3 ,4 ]
Wang, Zhijun [1 ,3 ,4 ]
He, Yuan [1 ,3 ,4 ]
Zhao, Hong [5 ]
Su, Chunguang [1 ,3 ,4 ]
Liu, Shuhui [1 ,3 ,4 ]
Chen, Weilong [1 ,3 ,4 ]
Zhao, Xiaoying [1 ,3 ,4 ]
Qi, Xin [1 ,3 ,4 ]
Sun, Kunxiang [1 ,3 ,4 ]
Jin, Chao [1 ,3 ,4 ]
Chu, Yimeng [1 ,3 ,4 ]
Zhao, Hongwei [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China
[3] Univ Chinese Acad Sci, Sch Nucl Sci & Technol, Beijing 100049, Peoples R China
[4] Adv Energy Sci & Technonl Guangdong Lab, Huizhou 516000, Peoples R China
[5] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear complex system; adaptive control; machine learning; particle accelerator; simulation to reality; LIGHT; MODEL; SPACE;
D O I
10.1007/s11433-024-2492-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Particle accelerators play a critical role in modern scientific research. However, existing manual beam control methods heavily rely on experienced operators, leading to significant time consumption and potential challenges in managing next-generation accelerators characterized by higher beam current and stronger nonlinear properties. In this paper, we establish a dynamical foundation for designing the online adaptive controller of accelerators using machine learning. This provides a guarantee for dynamic controllability for a class of scientific instruments whose dynamics are described by spatial-temporal equations of motion but only part variables along the instruments under steady states are available. The necessity of using historical time series of beam diagnostic data is emphasised. Key strategies involve also employing a well-established virtual beamline of accelerators, by which various beam calibration scenarios that actual accelerators may encounter are produced. Then the reinforcement learning algorithm is adopted to train the controller with the interaction to the virtual beamline. Finally, the controller is seamlessly transitioned to real ion accelerators, enabling efficient online adaptive control and maintenance. Notably, the controller demonstrates significant robustness, effectively managing beams with diverse charge mass ratios without requiring retraining. Such a controller allows us to achieve the global control within the entire superconducting section of the China Accelerator Facility for Superheavy Elements.
引用
收藏
页数:11
相关论文
共 34 条
  • [1] Basic Reinforcement Learning Techniques to Control the Intensity of a Seeded Free-Electron Laser
    Bruchon, Niky
    Fenu, Gianfranco
    Gaio, Giulio
    Lonza, Marco
    O'Shea, Finn Henry
    Pellegrino, Felice Andrea
    Salvato, Erica
    [J]. ELECTRONICS, 2020, 9 (05)
  • [2] Predicting discrete-time bifurcations with deep learning
    Bury, Thomas M.
    Dylewsky, Daniel
    Bauch, Chris T.
    Anand, Madhur
    Glass, Leon
    Shrier, Alvin
    Bub, Gil
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] Chauvin N, 2014, Arxiv, DOI arXiv:1410.7991
  • [4] Chen SA, 2023, Arxiv, DOI [arXiv:2303.06053, DOI 10.48550/ARXIV.2303.06053, 10.48550/arXiv.2303.06053]
  • [5] Orbit correction based on improved reinforcement learning algorithm
    Chen, Xiaolong
    Jia, Yongzhi
    Qi, Xin
    Wang, Zhijun
    He, Yuan
    [J]. PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2023, 26 (04)
  • [6] Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations
    Chen, Xing
    Araujo, Flavio Abreu
    Riou, Mathieu
    Torrejon, Jacob
    Ravelosona, Dafine
    Kang, Wang
    Zhao, Weisheng
    Grollier, Julie
    Querlioz, Damien
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [7] Coherent nanophotonic electron accelerator
    Chlouba, Tomas
    Shiloh, Roy
    Kraus, Stefanie
    Brueckner, Leon
    Litzel, Julian
    Hommelhoff, Peter
    [J]. NATURE, 2023, 622 (7983) : 476 - +
  • [8] Magnetic control of tokamak plasmas through deep reinforcement learning
    Degrave, Jonas
    Felici, Federico
    Buchli, Jonas
    Neunert, Michael
    Tracey, Brendan
    Carpanese, Francesco
    Ewalds, Timo
    Hafner, Roland
    Abdolmaleki, Abbas
    de las Casas, Diego
    Donner, Craig
    Fritz, Leslie
    Galperti, Cristian
    Huber, Andrea
    Keeling, James
    Tsimpoukelli, Maria
    Kay, Jackie
    Merle, Antoine
    Moret, Jean-Marc
    Noury, Seb
    Pesamosca, Federico
    Pfau, David
    Sauter, Olivier
    Sommariva, Cristian
    Coda, Stefano
    Duval, Basil
    Fasoli, Ambrogio
    Kohli, Pushmeet
    Kavukcuoglu, Koray
    Hassabis, Demis
    Riedmiller, Martin
    [J]. NATURE, 2022, 602 (7897) : 414 - +
  • [9] Inferring attracting basins of power system with machine learning
    Du, Yao
    Li, Qing
    Fan, Huawei
    Zhan, Meng
    Xiao, Jinghua
    Wang, Xingang
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [10] X-ray free-electron lasers light up materials science
    Dunne, Mike
    [J]. NATURE REVIEWS MATERIALS, 2018, 3 (09): : 290 - 292