共 75 条
[51]
Acid S., Campos L.M., A hybrid methodology for learning belief networks: BENEDICT, Internat. J. Approx. Reason., 27, 3, pp. 235-262, (2001)
[52]
Chickering D.M., Geiger D., Heckerman D., Learning Bayesian Networks: Search Methods and Experimental Results, pp. 112-128, (1995)
[53]
Kalisch M., Machler M., Colombo D., Maathuis M.H., Buhlmann P., Causal inference using graphical models with the R package pcalg, J. Stat. Softw., 47, 11, pp. 1-26, (2012)
[54]
Maathuis M.H., Kalisch M., Buhlmann P., Estimating high-dimensional intervention effects from observational data, Ann. Statist., 37, 6A, pp. 3133-3164, (2009)
[55]
Tsamardinos I., Brown L.E., Aliferis C.F., The max-min hill-climbing Bayesian network structure learning algorithm., Mach. Learn., 65, 1, pp. 31-78, (2007)
[56]
Lauritzen S.L., The EM algorithm for graphical association models with missing data, Comput. Statist. Data Anal., 19, 2, pp. 191-201, (1995)
[57]
Niloofar P., Ganjali M., Farid Rohani M., Performance evaluation of imputation based on Bayesian networks, Sankhya B, 75, 1, pp. 90-111, (2013)
[58]
Niloofar P., Ganjali M., Rohani M.F., Improving the performance of Bayesian networks in non-ignorable missing data imputation, Kuwait J. Sci., 40, 2, (2013)
[59]
Scutari M., Learning Bayesian networks with the bnlearn R package, J. Stat. Softw., 35, i03, (2010)
[60]
Niloofar P., Ganjali M., A new multivariate imputation method based on Bayesian networks, J. Appl. Stat., 41, 3, pp. 501-518, (2014)