PA-Net: A hybrid architecture for retinal vessel segmentation☆

被引:0
作者
Luo, Xuebing [1 ]
Peng, Lingxi [1 ]
Ke, Ziyan [1 ]
Lin, Jinhui [1 ]
Yu, Zhiwen [2 ]
机构
[1] Guangzhou Univ, Sch Mech & Elect Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510650, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Retinal vessel segmentation; Retinal images; Transformer; Feature fusion; Deep learning; IMAGES; ATTENTION;
D O I
10.1016/j.patcog.2024.111254
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a hybrid architecture, PA-Net, which amalgamates the strengths of convolutional neural networks and the transformer model to enhance the precision of retinal vessel segmentation. We propose a novel component, the Lightweight Parallel Transformer (LPT), to augment the transformer's adaptability for the task of retinal vessel segmentation. This LPT addresses the shortcomings of standard transformer that are highly dependent on large datasets and computing resources, and can capture long-range dependencies to prevent slender vessels from breaking. Furthermore, we introduce an Adaptive Vascular Feature Fusion module to offset the vascular information loss induced by downsampling layers, thereby enhancing microvessel recognition. The effectiveness of PA-Net was assessed across four distinct datasets: DRIVE, CHASE_DB1, STARE, and HRF, with sensitivities of 0.8284, 0.8570, 0.8813, and 0.8497, respectively. The results suggest that the proposed method outperforms other state-of-the-art alternatives.
引用
收藏
页数:12
相关论文
共 36 条
[1]   CMM-Net: Contextual multi-scale multi-level network for efficient biomedical image segmentation [J].
Al-masni, Mohammed A. ;
Kim, Dong-Hyun .
SCIENTIFIC REPORTS, 2021, 11 (01)
[2]   DAE-Former: Dual Attention-Guided Efficient Transformer for Medical Image Segmentation [J].
Azad, Reza ;
Arimond, Rene ;
Aghdam, Ehsan Khodapanah ;
Kazerouni, Amirhossein ;
Merhof, Dorit .
PREDICTIVE INTELLIGENCE IN MEDICINE, PRIME 2023, 2023, 14277 :83-95
[3]   Robust Vessel Segmentation in Fundus Images [J].
Budai, A. ;
Bock, R. ;
Maier, A. ;
Hornegger, J. ;
Michelson, G. .
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2013, 2013 (2013)
[4]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[5]  
Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, DOI 10.48550/ARXIV.2010.11929]
[6]  
Guo J., 2022, arXiv, DOI [DOI 10.48550/ARXIV.2210.15566, 10.48550/arXiv.2210.15566]
[7]   CMT: Convolutional Neural Networks Meet Vision Transformers [J].
Guo, Jianyuan ;
Han, Kai ;
Wu, Han ;
Tang, Yehui ;
Chen, Xinghao ;
Wang, Yunhe ;
Xu, Chang .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :12165-12175
[8]   Fundus Retinal Vessels Image Segmentation Method Based on Improved U-Net [J].
Han, J. ;
Wang, Y. ;
Gong, H. .
IRBM, 2022, 43 (06) :628-639
[9]  
Hendrycks D, 2020, Arxiv, DOI [arXiv:1606.08415, DOI 10.48550/ARXIV.1606.08415]
[10]   Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response [J].
Hoover, A ;
Kouznetsova, V ;
Goldbaum, M .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2000, 19 (03) :203-210