State of Health Estimation of Electric Vehicle Batteries Using Transformer-Based Neural Network

被引:0
|
作者
Zhao, Yixin [1 ]
Behdad, Sara [1 ]
机构
[1] Univ Florida, Environm Engn Sci, Gainesville, FL 32611 USA
来源
JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME | 2024年 / 146卷 / 10期
基金
美国国家科学基金会;
关键词
electric vehicle batteries; state of health estimation; transformer networks; alternative energy sources; energy storage systems; LITHIUM-ION BATTERIES; USEFUL LIFE PREDICTION; CHARGE; VALIDATION; MODELS;
D O I
10.1115/1.4065762
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electric vehicles (EVs) are considered an environmentally friendly option compared to conventional vehicles. As the most critical module in EVs, batteries are complex electrochemical components with nonlinear behavior. On-board battery system performance is also affected by complicated operating environments. Real-time EV battery in-service status prediction is tricky but vital to enable fault diagnosis and prevent dangerous occurrences. Data-driven models with advantages in time-series analysis can be used to capture the degradation pattern from data about certain performance indicators and predict the battery states. The transformer model can capture long-range dependencies efficiently using a multi-head attention block mechanism. This paper presents the implementation of a standard transformer and an encoder-only transformer neural network to predict EV battery state of health (SOH). Based on the analysis of the lithium-ion battery from the NASA Prognostics Center of Excellence website's publicly accessible dataset, 28 features related to the charge and discharge measurement data are extracted. The features are screened using Pearson correlation coefficients. The results show that the filtered features can improve the model's accuracy and computational efficiency. The proposed standard transformer shows good performance in the SOH prediction.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Deep learning-based state of charge estimation for electric vehicle batteries: Overcoming technological bottlenecks
    Lin, Shih-Lin
    HELIYON, 2024, 10 (16)
  • [42] A review on rapid state of health estimation of lithium-ion batteries in electric vehicles
    Wang, Zuolu
    Zhao, Xiaoyu
    Fu, Lei
    Zhen, Dong
    Gu, Fengshou
    Ball, Andrew D.
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 60
  • [43] State of health estimation for lithium-ion batteries based on incremental capacity analysis and Transformer modeling
    Xu, Zhaofan
    Chen, Zewang
    Yang, Lin
    Zhang, Songyuan
    APPLIED SOFT COMPUTING, 2024, 165
  • [44] Performance Analysis on Artificial Neural Network Based State of Charge Estimation for Electric Vehicles
    Aaruththiran, Manoharan
    Begam, K. M.
    Aparow, Vimal Rau
    Sooriamoorthy, Denesh
    2021 IEEE INTERNATIONAL CONFERENCE ON INTERNET OF THINGS AND INTELLIGENCE SYSTEMS (IOTAIS), 2021, : 176 - 182
  • [45] Applying Neural Network to Health Estimation and Lifetime Prediction of Lithium-Ion Batteries
    Li, Penghua
    Wu, Xiankui
    Grosu, Radu
    Hou, Jie
    Ilolov, Mamadsho
    Xiang, Sheng
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 4224 - 4248
  • [46] Prediction of electric vehicle battery state of health estimation using a hybrid deep learning mechanism
    Kant, Akshat
    Kumar, Manish
    Sihag, Sathans
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2025,
  • [47] State of charge estimation for lithium-ion batteries using dynamic neural network based on sine cosine algorithm
    Wei, Meng
    Ye, Min
    Li, Jia Bo
    Wang, Qiao
    Xu, Xin Xin
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2022, 236 (2-3) : 241 - 252
  • [48] A hybrid neural network model with attention mechanism for state of health estimation of lithium-ion batteries
    Tang, Aihua
    Jiang, Yihan
    Yu, Quanqing
    Zhang, Zhigang
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [49] State of Health Estimation for Lithium-ion Batteries Based on Fusion of Autoregressive Moving Average Model and Elman Neural Network
    Chen, Zheng
    Xue, Qiao
    Xiao, Renxin
    Liu, Yonggang
    Shen, Jiangwei
    IEEE ACCESS, 2019, 7 : 102662 - 102678
  • [50] State of Charge Estimation for Lithium-Ion Batteries Based on NARX Neural Network and UKF
    Qin, Xiaohan
    Gao, Mingyu
    He, Zhiwei
    Liu, Yuanyuan
    2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 1706 - 1711