[1] Univ Florida, Environm Engn Sci, Gainesville, FL 32611 USA
来源:
JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME
|
2024年
/
146卷
/
10期
基金:
美国国家科学基金会;
关键词:
electric vehicle batteries;
state of health estimation;
transformer networks;
alternative energy sources;
energy storage systems;
LITHIUM-ION BATTERIES;
USEFUL LIFE PREDICTION;
CHARGE;
VALIDATION;
MODELS;
D O I:
10.1115/1.4065762
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
Electric vehicles (EVs) are considered an environmentally friendly option compared to conventional vehicles. As the most critical module in EVs, batteries are complex electrochemical components with nonlinear behavior. On-board battery system performance is also affected by complicated operating environments. Real-time EV battery in-service status prediction is tricky but vital to enable fault diagnosis and prevent dangerous occurrences. Data-driven models with advantages in time-series analysis can be used to capture the degradation pattern from data about certain performance indicators and predict the battery states. The transformer model can capture long-range dependencies efficiently using a multi-head attention block mechanism. This paper presents the implementation of a standard transformer and an encoder-only transformer neural network to predict EV battery state of health (SOH). Based on the analysis of the lithium-ion battery from the NASA Prognostics Center of Excellence website's publicly accessible dataset, 28 features related to the charge and discharge measurement data are extracted. The features are screened using Pearson correlation coefficients. The results show that the filtered features can improve the model's accuracy and computational efficiency. The proposed standard transformer shows good performance in the SOH prediction.
机构:
Xiangtan Univ, Sch Automat & Elect Informat, Xiangtan, Peoples R ChinaXiangtan Univ, Sch Automat & Elect Informat, Xiangtan, Peoples R China
Liu, Tongshen
Huang, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Xiangtan Univ, Sch Automat & Elect Informat, Xiangtan, Peoples R ChinaXiangtan Univ, Sch Automat & Elect Informat, Xiangtan, Peoples R China
Huang, Wei
Pan, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Xiangtan Univ, Sch Automat & Elect Informat, Xiangtan, Peoples R ChinaXiangtan Univ, Sch Automat & Elect Informat, Xiangtan, Peoples R China
Pan, Rui
Wang, Yilin
论文数: 0引用数: 0
h-index: 0
机构:
Xiangtan Univ, Sch Automat & Elect Informat, Xiangtan, Peoples R ChinaXiangtan Univ, Sch Automat & Elect Informat, Xiangtan, Peoples R China
Wang, Yilin
Tan, Mao
论文数: 0引用数: 0
h-index: 0
机构:
Xiangtan Univ, Hunan Natl Ctr Appl Math, Xiangtan, Peoples R ChinaXiangtan Univ, Sch Automat & Elect Informat, Xiangtan, Peoples R China
Tan, Mao
Chen, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Xiangtan Univ, Hunan Engn Res Ctr MultiEnergy Cooperat Control T, Xiangtan, Peoples R ChinaXiangtan Univ, Sch Automat & Elect Informat, Xiangtan, Peoples R China
Chen, Jie
2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA,
2023,
: 1783
-
1787
机构:
Qingdao Univ, Weihai Innovat Res Inst, Sch Elect Engn, Qingdao 266000, Peoples R ChinaQingdao Univ, Weihai Innovat Res Inst, Sch Elect Engn, Qingdao 266000, Peoples R China
Gao, Jingyi
Yang, Dongfang
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Univ Sci & Technol, Haojing Coll, Xian 712046, Peoples R ChinaQingdao Univ, Weihai Innovat Res Inst, Sch Elect Engn, Qingdao 266000, Peoples R China
Yang, Dongfang
Wang, Shi
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing, Peoples R ChinaQingdao Univ, Weihai Innovat Res Inst, Sch Elect Engn, Qingdao 266000, Peoples R China
Wang, Shi
Li, Zhaoting
论文数: 0引用数: 0
h-index: 0
机构:
Brown Univ, Sch Engn, Providence, RI 02912 USAQingdao Univ, Weihai Innovat Res Inst, Sch Elect Engn, Qingdao 266000, Peoples R China
Li, Zhaoting
Wang, Licheng
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ Technol, Sch Informat Engn, Hangzhou 310014, Hangzhou, Peoples R ChinaQingdao Univ, Weihai Innovat Res Inst, Sch Elect Engn, Qingdao 266000, Peoples R China
Wang, Licheng
Wang, Kai
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ, Weihai Innovat Res Inst, Sch Elect Engn, Qingdao 266000, Peoples R China
Shandong Suoxiang Intelligent Technol Co Ltd, Weifang 261101, Peoples R ChinaQingdao Univ, Weihai Innovat Res Inst, Sch Elect Engn, Qingdao 266000, Peoples R China
机构:
Samsung Elect, Samsung Adv Inst Technol, Elect Mat Res Complex,130 Samsung Ro, Gyeonggi Do 443803, South KoreaSamsung Elect, Samsung Adv Inst Technol, Elect Mat Res Complex,130 Samsung Ro, Gyeonggi Do 443803, South Korea