Condensation of Mg-vapor in vacuum carbothermic reduction of magnesia

被引:0
作者
Liu, Hai [1 ,2 ,3 ,4 ]
Tian, Yang [1 ,2 ,3 ,4 ]
Yang, Bin [1 ,2 ,3 ,4 ]
Liu, Dachun [1 ,2 ,3 ,4 ]
Xu, Baoqiang [1 ,2 ,3 ,4 ]
Qu, Tao [1 ,2 ,3 ,4 ]
Dai, Yongnian [1 ,2 ,3 ,4 ]
机构
[1] National Engineering Laboratory for Vacuum Metallurgy, Kunming
[2] State Key Laboratory of Complex Non-Ferrous Metal Resources Clear Utilization, Kunming
[3] Key Laboratory of Vacuum Metallurgy for Nonferrous Metal of Yunnan Province, Kunming
[4] Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming
来源
Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology | 2015年 / 35卷 / 07期
关键词
Condensation temperature; Magnesium vapor condensation; Temperature gradient; Vacuum;
D O I
10.13922/j.cnki.cjovst.2015.07.14
中图分类号
学科分类号
摘要
We experimentally addressed the direct recovery of Mg vapor by condensation in carbothermic reduction of magnesia in vacuum. The influence of the condensation conditions, including the temperature, temperature gradient and pressure, on the recovery efficiency of Mg vapor was investigated with X-ray diffraction, and scanning electron microscopy and energy dispersive spectroscopy. The results show that the pressure, condensation temperature and temperature gradient, strongly affect the recovery efficiency of Mg vapor and microstructures of Mg condensate. To be specific, in the 30~100 Pa range and with a fixed temperature gradient, a temperature close to the dew-point of Mg vapor resulted in high Mg recovery efficiency; at the optimized condensation temperature and pressure, a decreased temperature gradient increased the compactness and grain-size of the 90.05% pure Mg-condensate. ©, 2015, Science Press. All right reserved.
引用
收藏
页码:867 / 871
页数:4
相关论文
共 10 条
  • [1] Winand R., Production of Magnesium by Vacuum Carhothermic Reduction of Calcined Dolomite, Trans Instn Min Metall (SectionC), pp. 105-111, (1990)
  • [2] Li R., Pan W., Sano M., Li J., Kinetics of Reduction of Magnesia with Carbon, Thermochimica Acta, pp. 145-151, (2002)
  • [3] Brooks G., Trang S., Witt P., Et al., The Carbothermic Route to Magnesium, JOM, 58, 5, pp. 51-55, (2006)
  • [4] Prentice L., Nagle M., Constanti-Carey K., Impurities in the Carbothermal Production of Magnesium: To 15001, High Temperature Processing Ymposium, (2009)
  • [5] Prentice L., Wai Poi N., Haque N., Life Cycle Assessment of Carbothermal Production of Magnesium in Australia, IMA 67 th Annual World Magnesium Conference, International Magnesium Association, pp. 77-82, (2010)
  • [6] Prentice L.H., Nagle M.W., Barton T.R.D., Et al., Carbothermal Production of Magnesium: CSIRO S MAG-SONIC™ Process, TMS, pp. 31-34, (2012)
  • [7] Tian Y., Qu T., Yang B., Et al., Behavior Analysis of CaF<sub>2</sub> in Magnesia Carbothermic Reduction Process in Vacuum, Metallurgical and Materials Transactions, (2012)
  • [8] Yang C.-B., Tian Y., Qu T., Et al., Production of Magnesium during Carbothermal Reduction of Magnesium Oxide by Differential Condensation of Magnesium and Alkali Vapour, Journal of Magnesium and Alloys, pp. 323-329, (2013)
  • [9] Tian Y., Xu B.-Q., Yang C.-B., Et al., Analysis of Magnesia Carbothermic Reduction Processin Vacuum, MAMTB, pp. 1936-1941, (2014)
  • [10] Yang C.-B., Tian Y., Qu T., Et al., Analysis of the Behavior of Magnesium and CO Vapor in the Carbothermic Reduction of Magnesia in a Vacuum, Journal of Magnesium and Alloys, pp. 50-58, (2014)