Low-temperature heat capacity, phase transitions and thermodynamic functions of 2-furfurylamine

被引:0
|
作者
Druzhinina, Anna I. [1 ]
Dorofeeva, Olga V. [1 ]
Tarazanov, Sergey V. [2 ]
Lukyanova, Vera A. [1 ]
Ilin, Dmitriy Yu. [1 ]
机构
[1] Lomonosov Moscow State Univ, Dept Chem, Moscow 119991, Russia
[2] All Russia Res Inst Oil Refining, 6-2 Aviamotornaya St, Moscow 111116, Russia
关键词
2-furfurylamine; Adiabatic calorimetry; Heat capacity; Phase transitions; Thermodynamic functions;
D O I
10.1016/j.tca.2024.179915
中图分类号
O414.1 [热力学];
学科分类号
摘要
Heat capacities of 2-furfurylamine were measured by low-temperature adiabatic calorimetry in the temperature range from 5.6 to 356.1 K. Two phase transitions, solid phase transition and melting, were revealed at temperatures of 180.4 K and 228.17 K. Thermodynamic characteristics determined from experimental data show that the mechanism of solid phase transition is intermediate between order-disorder and displacive type. This conclusion is in agreement with X-ray crystallography data (Seidel et al., 2019). The standard thermodynamic functions in the condensed state (molar heat capacity, enthalpy, entropy and Gibbs energy) were calculated in the temperature range 5 - 350 K. Using the determined value of entropy for liquid 2-furfurylamine and available value of fH degrees m(l), the properties of formation, fS degrees m(l) and fG degrees m(l), were obtained. The thermodynamic functions of gaseous 2-furfurylamine were calculated taking into account the internal rotation in this molecule. The required molecular constants were determined from quantum chemical calculations.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] LOW-TEMPERATURE HEAT-CAPACITY AND THERMODYNAMIC FUNCTIONS OF 2-CHLORO-6-(TRICHLOROMETHYL)PYRIDINE
    TAN, ZC
    SORAI, M
    SUGA, H
    SCIENCE IN CHINA SERIES B-CHEMISTRY, 1989, 32 (10): : 1194 - 1207
  • [32] Low-temperature heat capacity and thermodynamic functions of KTh2(PO4)3
    Knyazev, A. V.
    Smirnova, N. N.
    Manyakina, M. E.
    Shushunov, A. N.
    THERMOCHIMICA ACTA, 2014, 584 : 67 - 71
  • [33] Low-temperature heat capacity and thermodynamic functions of dysprosium selenide Dy2Se3
    Bespyatov, M. A.
    Musikhin, A. E.
    Zelenina, L. N.
    Chusova, T. P.
    Nikolaev, R. E.
    Korolkov, I., V
    THERMOCHIMICA ACTA, 2020, 686
  • [34] Low-temperature heat capacity and thermodynamic properties of leongardite
    Paukov, IE
    Fursenko, BA
    GEOKHIMIYA, 1998, (05): : 536 - 538
  • [35] The low-temperature heat capacity and thermodynamic properties of GaSe
    Tyurin, AV
    Gavrichev, KS
    Gorbunov, VE
    Golushina, LN
    Izotov, AD
    Zlomanov, VP
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY, 2004, 78 (10): : 1539 - 1542
  • [36] Low-temperature heat capacity and thermodynamic properties of InSe
    A. V. Tyurin
    K. S. Gavrichev
    V. P. Zlomanov
    Inorganic Materials, 2007, 43 : 921 - 925
  • [37] Low-Temperature Heat Capacity and Thermodynamic Properties of Leongardite
    Paukov, I.E.
    Fursenko, B.A.
    Geochemistry International, 1998, 36 (05): : 471 - 473
  • [38] Low-temperature heat capacity and thermodynamic properties of InSe
    Tyurin, A. V.
    Gavrichev, K. S.
    Zlomanov, V. P.
    INORGANIC MATERIALS, 2007, 43 (09) : 921 - 925
  • [39] Low-temperature heat capacity of tin dioxide: new standard data on thermodynamic functions
    Gurevich, VM
    Gavrichev, KS
    Polyakov, VB
    Clayton, RN
    Mineev, SD
    Hu, G
    Gorbunov, VE
    Golushina, LN
    THERMOCHIMICA ACTA, 2004, 421 (1-2) : 179 - 184
  • [40] Low-temperature Heat Capacity and Standard Thermodynamic Functions of D-Galactose and Galactitol
    Cheng Ze
    Xue Bin
    Tan Zhicheng
    Shi Quan
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2015, 31 (06) : 987 - 991