A novel multi-label classification deep learning method for hybrid fault diagnosis in complex industrial processes

被引:0
|
作者
Zhou, Kun [1 ]
Tong, Yifan [1 ]
Wei, Xiaoran [1 ]
Song, Kai [1 ,2 ]
Chen, Xu [1 ,2 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] Tianjin Key Lab Chem Proc Safety & Equipment Techn, Tianjin 300350, Peoples R China
关键词
Hybrid fault diagnosis; Transformer; Multi-label classification; Diagnosis strategy; Tennessee Eastman process;
D O I
10.1016/j.measurement.2024.115804
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hybrid Fault Detection and Diagnosis, encompassing both individual and simultaneous faults, is an important solution needed in chemical process safety practice. We systematically examine the two perspectives of simultaneous faults in previous studies: multi-class and multi-label classification, and highlight the limitations of the former while demonstrating the efficacy of the latter. Then, a novel multi-label classification Hybrid Fault Transformer (mcHFT) model was put forward to address hybrid faults. Our model is capable of learning not only intrinsic features of individual faults but also their coupled relationships. Importantly, this work constitutes the first comprehensive evaluation of Hybrid FDD on the Tennessee Eastman (TE) process to our knowledge. The mcHFT model significantly enhances key performance indicators over existing models and introduces an adaptive strategy to reduce false positives. The dataset developed for this research is made available under an MIT license, contributing a valuable resource for future exploration in this field.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A Survey of Multi-label Text Classification Based on Deep Learning
    Chen, Xiaolong
    Cheng, Jieren
    Liu, Jingxin
    Xu, Wenghang
    Hua, Shuai
    Tang, Zhu
    Sheng, Victor S.
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT I, 2022, 13338 : 443 - 456
  • [22] Multi-Label Classification of Text Documents Using Deep Learning
    Mohammed, Hamza Haruna
    Dogdu, Erdogan
    Gorur, Abdul Kadir
    Choupani, Roya
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 4681 - 4689
  • [23] InstructNet: A novel approach for multi-label instruction classification through advanced deep learning
    Aurpa, Tanjim Taharat
    Ahmed, Md. Shoaib
    Rahman, Md. Mahbubur
    Moazzam, Md. Golam
    PLOS ONE, 2024, 19 (10):
  • [24] Multi-Label Classification of Lung Diseases Using Deep Learning
    Irtaza, Muhammad
    Ali, Arshad
    Gulzar, Maryam
    Wali, Aamir
    IEEE ACCESS, 2024, 12 : 124062 - 124080
  • [25] MULTI-LABEL CLASSIFICATION OF ICD CODING USING DEEP LEARNING
    Hsu, Chung-Chian
    Chang, Pei-Chi
    Chang, Arthur
    2020 INTERNATIONAL SYMPOSIUM ON COMMUNITY-CENTRIC SYSTEMS (CCS), 2020,
  • [26] Distributed Deep Learning for Multi-Label Chest Radiography Classification
    Monshi, Maram Mahmoud A.
    Poon, Josiah
    Chung, Vera
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 949 - 956
  • [27] Fault Diagnosis of Rotating Electrical Machines Using Multi-Label Classification
    Dineva, Adrienn
    Mosavi, Amir
    Gyimesi, Mate
    Vajda, Istvan
    Nabipour, Narjes
    Rabczuk, Timon
    APPLIED SCIENCES-BASEL, 2019, 9 (23):
  • [28] Multi-Label Arabic Text Classification Based On Deep Learning
    Alsukhni, Batool
    2021 12TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2021, : 475 - 477
  • [29] Deep Semantic Dictionary Learning for Multi-label Image Classification
    Zhou, Fengtao
    Huang, Sheng
    Xing, Yun
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 3572 - 3580
  • [30] Multi-label classification of frog species via deep learning
    Xie, Jie
    Zeng, Rui
    Xu, Changliang
    Zhang, Jinglan
    Roe, Paul
    2017 IEEE 13TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE), 2017, : 187 - 193