Enhancing cross-subject emotion recognition precision through unimodal EEG: a novel emotion preceptor model

被引:0
作者
Dong, Yihang [1 ,2 ]
Jing, Changhong [1 ]
Mahmud, Mufti [3 ]
Ng, Michael Kwok-Po [4 ]
Wang, Shuqiang [1 ,2 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[2] Univ Chinese Acad Sci, Chinese Acad Sci, Beijing, Peoples R China
[3] King Fahd Univ Petr & Minerals, Informat & Comp Sci Dept, Dhahran, Saudi Arabia
[4] Hong Kong Baptist Univ, Dept Math, Hong Kong, Peoples R China
关键词
Emotion recognition; EEG; Temporal causal network; INDIVIDUAL-DIFFERENCES;
D O I
10.1186/s40708-024-00245-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Affective computing is a key research area in computer science, neuroscience, and psychology, aimed at enabling computers to recognize, understand, and respond to human emotional states. As the demand for affective computing technology grows, emotion recognition methods based on physiological signals have become research hotspots. Among these, electroencephalogram (EEG) signals, which reflect brain activity, are highly promising. However, due to individual physiological and anatomical differences, EEG signals introduce noise, reducing emotion recognition performance. Additionally, the synchronous collection of multimodal data in practical applications requires high equipment and environmental standards, limiting the practical use of EEG signals. To address these issues, this study proposes the Emotion Preceptor, a cross-subject emotion recognition model based on unimodal EEG signals. This model introduces a Static Spatial Adapter to integrate spatial information in EEG signals, reducing individual differences and extracting robust encoding information. The Temporal Causal Network then leverages temporal information to extract beneficial features for emotion recognition, achieving precise recognition based on unimodal EEG signals. Extensive experiments on the SEED and SEED-V datasets demonstrate the superior performance of the Emotion Preceptor and validate the effectiveness of the new data processing method that combines DE features in a temporal sequence. Additionally, we analyzed the model's data flow and encoding methods from a biological interpretability perspective and validated it with neuroscience research related to emotion generation and regulation, promoting further development in emotion recognition research based on EEG signals.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Multisource Associate Domain Adaptation for Cross-Subject and Cross-Session EEG Emotion Recognition
    She, Qingshan
    Zhang, Chenqi
    Fang, Feng
    Ma, Yuliang
    Zhang, Yingchun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [22] Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network
    Li, Jingcong
    Li, Shuqi
    Pan, Jiahui
    Wang, Fei
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [23] Band-Level Adaptive Fusion Network for Cross-Subject EEG Emotion Recognition
    Wang, Yilin
    Zhang, Li
    Zhang, Yan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [24] Cross-Subject Emotion Recognition Based on Domain Similarity of EEG Signal Transfer Learning
    Ma, Yuliang
    Zhao, Weicheng
    Meng, Ming
    Zhang, Qizhong
    She, Qingshan
    Zhang, Jianhai
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 936 - 943
  • [25] Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition
    Cimtay, Yucel
    Ekmekcioglu, Erhan
    SENSORS, 2020, 20 (07)
  • [26] Generator-based Domain Adaptation Method with Knowledge Free for Cross-subject EEG Emotion Recognition
    Dongmin Huang
    Sijin Zhou
    Dazhi Jiang
    Cognitive Computation, 2022, 14 : 1316 - 1327
  • [27] Generator-based Domain Adaptation Method with Knowledge Free for Cross-subject EEG Emotion Recognition
    Huang, Dongmin
    Zhou, Sijin
    Jiang, Dazhi
    COGNITIVE COMPUTATION, 2022, 14 (04) : 1316 - 1327
  • [28] Personal-Zscore: Eliminating Individual Difference for EEG-Based Cross-Subject Emotion Recognition
    Chen, Huayu
    Sun, Shuting
    Li, Jianxiu
    Yu, Ruilan
    Li, Nan
    Li, Xiaowei
    Hu, Bin
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 2077 - 2088
  • [29] Interpretable Cross-Subject EEG-Based Emotion Recognition Using Channel-Wise Features†
    Jin, Longbin
    Kim, Eun Yi
    SENSORS, 2020, 20 (23) : 1 - 18
  • [30] A novel multi-source contrastive learning approach for robust cross-subject emotion recognition in EEG data
    Deng, Xin
    Li, Chenhui
    Hong, Xinyi
    Huo, Huaxiang
    Qin, Hongxing
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 97