Interpretation of machine learning-based prediction models and functional metagenomic approach to identify critical genes in HBCD degradation

被引:0
|
作者
Lin, Yu-Jie [1 ]
Hsieh, Ping-Heng [1 ]
Mao, Chun-Chia [1 ]
Shih, Yang-Hsin [2 ]
Chen, Shu-Hwa [3 ]
Lin, Chung-Yen [1 ,4 ]
机构
[1] Acad Sinica, Inst Biomed Sci, 128, Acad Rd, Sect 2 Nankang, Taipei 11529, Taiwan
[2] Natl Taiwan Univ, Dept Agr Chem, 1 Roosevelt Rd,Sect 4, Taipei 10617, Taiwan
[3] Taipei Med Univ, TMU Res Ctr Canc Translat Med, 250 Wuxing St, Taipei 11031, Taiwan
[4] Natl Taiwan Univ, Inst Fisheries Sci, 1,Sect 4,Roosevelt Rd, Taipei 10617, Taiwan
关键词
Hexabromocyclododecane (HBCD); Machine Learning; Biodegradation; Metagenomics; DELTA-HBCD; IN-VITRO; BIOTRANSFORMATION; STEREOCHEMISTRY; RESOURCE; ENZYME;
D O I
10.1016/j.jhazmat.2024.136976
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hexabromocyclododecane (HBCD) poses significant environmental risks, and identifying HBCD-degrading microbes and their enzymatic mechanisms is challenging due to the complexity of microbial interactions and metabolic pathways. This study aimed to identify critical genes involved in HBCD biodegradation through two approaches: functional annotation of metagenomes and the interpretation of machine learning-based prediction models. Our functional analysis revealed a rich metabolic potential in Chiang Chun soil (CCS) metagenomes, particularly in carbohydrate metabolism. Among the machine learning algorithms tested, random forest models outperformed others, especially when trained on datasets reflecting the degradation patterns of species like Dehalococcoides mccartyi and Pseudomonas aeruginosa. These models highlighted enzymes such as EC 1.8.3.2 (thiol oxidase) and EC 4.1.1.43 (phenylpyruvate decarboxylase) as inhibitors of degradation, while EC 2.7.1.83 (pseudouridine kinase) was linked to enhanced degradation. This dual-methodology approach not only deepens our understanding of microbial functions in HBCD degradation but also provides an unbiased view of the mi- crobial and enzymatic interactions involved, offering a more targeted and effective bioremediation strategy.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] MACI: A machine learning-based approach to identify drug classes of antibiotic resistance genes from metagenomic data
    Chowdhury, Rohit Roy
    Dhar, Jesmita
    Robinson, Stephy Mol
    Lahiri, Abhishake
    Basak, Kausik
    Paul, Sandip
    Banerjee, Rachana
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 167
  • [2] Interpretability of machine learning-based prediction models in healthcare
    Stiglic, Gregor
    Kocbek, Primoz
    Fijacko, Nino
    Zitnik, Marinka
    Verbert, Katrien
    Cilar, Leona
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (05)
  • [3] Prediction of shear strength in UHPC beams using machine learning-based models and SHAP interpretation
    Ye, Meng
    Li, Lifeng
    Yoo, Doo-Yeol
    Li, Huihui
    Zhou, Cong
    Shao, Xudong
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 408
  • [4] Machine Learning-Based Approach for Hardware Faults Prediction
    Khalil, Kasem
    Eldash, Omar
    Kumar, Ashok
    Bayoumi, Magdy
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (11) : 3880 - 3892
  • [5] A Machine Learning-Based Approach for Crop Price Prediction
    Gururaj, H. L.
    Janhavi, V.
    Lakshmi, H.
    Soundarya, B. C.
    Paramesha, K.
    Ramesh, B.
    Rajendra, A. B.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (03)
  • [6] Exploring the ability of machine learning-based virtual screening models to identify the functional groups responsible for binding
    Hadfield, Thomas E.
    Scantlebury, Jack
    Deane, Charlotte M.
    JOURNAL OF CHEMINFORMATICS, 2023, 15 (01)
  • [7] Machine learning-based prediction model and visual interpretation for prostate cancer
    Gang Chen
    Xuchao Dai
    Mengqi Zhang
    Zhujun Tian
    Xueke Jin
    Kun Mei
    Hong Huang
    Zhigang Wu
    BMC Urology, 23
  • [8] Exploring the ability of machine learning-based virtual screening models to identify the functional groups responsible for binding
    Thomas E. Hadfield
    Jack Scantlebury
    Charlotte M. Deane
    Journal of Cheminformatics, 15
  • [9] Machine learning-based prediction and interpretation of decomposition temperatures of energetic materials
    Wu, Jun-nan
    Song, Si-wei
    Tian, Xiao-lan
    Wang, Yi
    Qi, Xiu-juan
    ENERGETIC MATERIALS FRONTIERS, 2023, 4 (04): : 254 - 261
  • [10] Machine learning-based prediction model and visual interpretation for prostate cancer
    Chen, Gang
    Dai, Xuchao
    Zhang, Mengqi
    Tian, Zhujun
    Jin, Xueke
    Mei, Kun
    Huang, Hong
    Wu, Zhigang
    BMC UROLOGY, 2023, 23 (01)