Synthesis, characterization, proteolytic activity inhibition, ADMET prediction, and molecular docking studies of novel indole derivatives as potential SARS-CoV-2 protease inhibitors

被引:0
|
作者
Chihab, Abdelali [1 ]
El Brahmi, Nabil [1 ]
El Abbouchi, Abdelmoula [1 ]
El Alaoui, Abdelaziz [2 ]
Bousmina, Mostapha [1 ]
El Fahime, Elmostafa [3 ]
El Kazzouli, Said [1 ]
机构
[1] Euromed Univ Fes UEMF, Fes, Morocco
[2] Ibn Tofail Univ, Fac Sci, Kenitra, Morocco
[3] Ctr Natl Rech Sci Tech CNRST, Angle Ave FAR Allal Fassi, Rabat 10102, Morocco
关键词
Indole-based inhibitors; SARS-CoV-2; Main protease; Papain-like protease; COVID-19; Molecular docking; DFT; FRET; DISCOVERY; DESIGN; COVID-19; IMPACT;
D O I
10.1016/j.molstruc.2024.140707
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Both the main protease (Mpro) and papain protease (PLpro) are fundamental enzymes in SARS-CoV-2 life cycle. In this study, we have targeted these two enzymes using novel indole derivatives as antiviral agents. The synthesized compounds were thoroughly characterized by Fourier-transform infrared spectroscopy (FT-IR), UV-vis, 1 H, 13 C, and 2D nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HRMS), and melting point (m.p.). The optimized structure, reactivity, and stability of the synthesized compounds were calculated using Density Functional Theory (DFT) at the B3LYP/6-31G(d,p) level. Using in silico ADMET prediction along with molecular docking, we found that the synthesized compounds presented good docking scores and very low predicted inhibition constants (Pki) from low micromolar to nanomolar ranges. In particular, compounds 10 and 11 with respective Pki values of 1.68 mu M and 387.71 nM for M pro and 402.50 nM and 27.10 nM for PLpro. These two compounds are engaged in vast range of interactions with the active sites of both enzymes. Further in vitro investigations using fluorescence resonance energy transfer (FRET) assays demonstrated that compounds 10 and 11 inhibited M pro proteolytic activity with approximate IC50 values of 20 mu M and 10 mu M, respectively. These findings suggest that these new indole derivatives could serve as promising candidates for the development of drugs against SARS-CoV-2 and potentially other future coronaviruses.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Molecular dynamics simulation of docking structures of SARS-CoV-2 main protease and HIV protease inhibitors
    Cardoso, Wesley B.
    Mendanha, Sebastiao A.
    JOURNAL OF MOLECULAR STRUCTURE, 2021, 1225
  • [22] A novel coumarin-triazole-thiophene hybrid: synthesis, characterization, ADMET prediction, molecular docking and molecular dynamics studies with a series of SARS-CoV-2 proteins
    Omar, Rebaz Anwar
    Koparir, Pelin
    Sarac, Kamuran
    Koparir, Metin
    Safin, Damir A.
    JOURNAL OF CHEMICAL SCIENCES, 2023, 135 (01)
  • [23] Identification of possible SARS-CoV-2 main protease inhibitors: in silico molecular docking and dynamic simulation studies
    Mukherjee, Aniruddhya
    Pandey, Khushhali Menaria
    Ojha, Krishna Kumar
    Sahu, Sumanta Kumar
    BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES, 2023, 12 (01)
  • [24] Identification of possible SARS-CoV-2 main protease inhibitors: in silico molecular docking and dynamic simulation studies
    Aniruddhya Mukherjee
    Khushhali Menaria Pandey
    Krishna Kumar Ojha
    Sumanta Kumar Sahu
    Beni-Suef University Journal of Basic and Applied Sciences, 12
  • [25] A novel coumarin-triazole-thiophene hybrid: synthesis, characterization, ADMET prediction, molecular docking and molecular dynamics studies with a series of SARS-CoV-2 proteins
    Rebaz Anwar Omar
    Pelin Koparir
    Kamuran Sarac
    Metin Koparir
    Damir A Safin
    Journal of Chemical Sciences, 135
  • [26] Determination of potential inhibitors based on isatin derivatives against SARS-CoV-2 main protease (mpro): a molecular docking, molecular dynamics and structure-activity relationship studies
    Badavath, Vishnu Nayak
    Kumar, Akhil
    Samanta, Pralok K.
    Maji, Siddhartha
    Das, Anik
    Blum, Galia
    Jha, Anjali
    Sen, Anik
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (07) : 3110 - 3128
  • [27] Molecular Docking of Novel 5-O-benzoylpinostrobin Derivatives as SARS-CoV-2 Main Protease Inhibitors
    Pratama, Mohammad Rizki Fadhil
    Poerwono, Hadi
    Siswodihardjo, Siswandono
    PHARMACEUTICAL SCIENCES, 2020, 26 : S63 - S77
  • [28] Synthetic Coumarin Derivatives as SARS-CoV-2 Major Protease Inhibitors: Design, Synthesis, Bioevaluation and Molecular Docking
    Mohamed, Nada M.
    Eltelbany, Rania F. A.
    CHEMISTRYSELECT, 2021, 6 (47): : 13616 - 13626
  • [29] Novel indole derivatives of dihydropyrimidinone: Synthesis, characterization, molecular docking and antimicrobial activity
    Bhat, Mashooq A.
    Naglah, Ahmed M.
    Bakheit, Ahmed Hassan
    -Omar, Mohamed A. Al
    Ansari, Siddique Akber
    Alkahtani, Hamad M.
    Aleanizy, Fadilah Sfouq
    Eltayb, Esra Kamal
    Alqahtani, Fulwah Y.
    JOURNAL OF MOLECULAR STRUCTURE, 2023, 1291
  • [30] Identification of musk compounds as inhibitors of the main SARS-CoV-2 protease by molecular docking and molecular dynamics studies
    Belhassan, Assia
    Salgado, Guillermo
    Mendoza-Huizar, Luis humberto
    Zaki, Hanane
    Chtita, Samir
    Lakhlifi, Tahar
    Bouachrine, Mohammed
    Candia, Lorena gerli
    Cardona, Wilson
    JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, 2024, 89 (11) : 1447 - 1460