Robust interface for O3-type layered cathode towards stable ether-based sodium-ion full batteries

被引:1
|
作者
Zeng, Aoyan [1 ]
He, Yongju [1 ]
Qin, Mulan [2 ]
Hu, Chao [1 ]
Huang, Fei [1 ]
Qiu, Jilong [1 ]
Liang, Shuquan [1 ,3 ]
Sun, Yanyan [1 ]
Fang, Guozhao [1 ,3 ]
机构
[1] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Peoples R China
[2] Hunan Inst Engn, Coll Mat & Chem Engn, Hunan Prov Key Lab Environm Catalysis & Waste Recy, Xiangtan 411104, Peoples R China
[3] Cent South Univ, Key Lab Elect Packaging & Adv Funct Mat Hunan Prov, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion batteries; Layered oxide cathode; Ether-based electrolyte; Cathode-electrolyte interface;
D O I
10.1016/j.ensm.2024.103894
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing a robust cathode-electrolyte interface (CEI) is crucial for stable layered cathode in sodium-ion batteries (SIBs). A CEI based on ester electrolytes often exhibit poor stability and robustness, which cannot address the issues of structural collapse and material dissolution in layered cathodes. However, there are few reports on constructing a stable CEI for layered cathode based on ether electrolytes. Here we develop a robust CEI for O3- type cathode via DME solvent, which enables a long-term stability of full SIBs. The results indicate that unique decomposition process of DME yields favorable organic component (e.g. RCH2ONa) and high content of inorganic components (e.g. NaF and Na2CO3) in the CEI, which is quite different from ester electrolyte, improving Na+ diffusion kinetic and interfacial stability. Notably, the O3-NaNi0.5Mn0.5O2||Na cell with the designed electrolyte demonstrates outstanding stability up to 500 cycles. Furthermore, the full cell exhibits remarkable cycling performance with a capacity retention of 85 % over 200 cycles. This work provides an opportunity for stable operation of layered cathode materials via inexpensive ether electrolytes.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Revealing the anionic redox chemistry in O3-type layered oxide cathode for sodium-ion batteries
    Yu, Yang
    Ning, De
    Li, Qingyuan
    Franz, Alexandra
    Zheng, Lirong
    Zhang, Nian
    Ren, Guoxi
    Schumacher, Gerhard
    Liu, Xiangfeng
    ENERGY STORAGE MATERIALS, 2021, 38 (38) : 130 - 140
  • [2] A novel air-stable O3-type layered oxide cathode material with low Ni content for sodium-ion batteries
    Patat, Saban
    Sahin, Ayse
    Tas, Yusuf
    Sanli, Ferhat
    Yilmaz, Yakup
    Ozturk, Tayfur
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (15) : 22025 - 22037
  • [3] Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries
    Zhao, Shengyu
    Shi, Qinhao
    Feng, Wuliang
    Liu, Yang
    Yang, Xinxin
    Zou, Xingli
    Lu, Xionggang
    Zhao, Yufeng
    CHINESE CHEMICAL LETTERS, 2024, 35 (05)
  • [4] Negative Lattice Expansion in an O3-Type Transition-Metal Oxide Cathode for Highly Stable Sodium-Ion Batteries
    Zhang, Tong
    Ren, Meng
    Huang, Yaohui
    Li, Fei
    Hua, Weibo
    Indris, Sylvio
    Li, Fujun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (08)
  • [5] Anion-derived cathode interface engineering enables ether-based electrolytes for sodium-ion batteries
    Zhang, Guangxiang
    Ma, Chi
    Fu, Chuankai
    Liu, Ziwei
    Zhao, Haoquan
    Chen, Meng
    Shi, Qingmo
    Huo, Hua
    Zuo, Pengjian
    Yin, Geping
    Ma, Yulin
    CHEMICAL ENGINEERING JOURNAL, 2023, 475
  • [6] La-doped O3-type layered oxide cathode with enhanced cycle stability for sodium-ion batteries
    Feng, Lihua
    Xia, Yufan
    Guo, Jinze
    Liu, Huiling
    Hao, Youchen
    Tian, Ziqi
    Xiao, Xin
    Feng, Lijie
    Sun, Chujun
    Qi, Shunmian
    Li, Kuoqin
    Li, Yong
    Jiang, Yinzhu
    CHEMICAL ENGINEERING JOURNAL, 2024, 496
  • [7] High-Entropy Co-Free O3-Type Layered Oxyfluoride: A Promising Air-Stable Cathode for Sodium-Ion Batteries
    Joshi, Akanksha
    Chakrabarty, Sankalpita
    Akella, Sri Harsha
    Saha, Arka
    Mukherjee, Ayan
    Schmerling, Bruria
    Ejgenberg, Michal
    Sharma, Rosy
    Noked, Malachi
    ADVANCED MATERIALS, 2023, 35 (51)
  • [8] Air Stable O3-Type Cathode Material with Nanometer Size for Durable Low-Temperature Sodium-Ion Batteries
    Jin, Yan
    Li, Yunbo
    Li, Jianguo
    Zhou, Hongyan
    Chen, Xianghong
    Jiang, Pan
    Fan, Qinghua
    Kuang, Quan
    Dong, Youzhong
    Zhao, Yanming
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (09): : 4121 - 4131
  • [9] O3-Type Cathodes for Sodium-Ion Batteries: Recent Advancements and Future Perspectives
    Li, Xinghan
    Fan, Yameng
    Johannessen, Bernt
    Xu, Xun
    See, Khay Wai
    Pang, Wei Kong
    BATTERIES & SUPERCAPS, 2024, 7 (05)
  • [10] Ultralong Cycle Life Organic Cathode Enabled by Ether-Based Electrolytes for Sodium-Ion Batteries
    Wang, Yuqing
    Bai, Panxing
    Li, Benfang
    Zhao, Chen
    Chen, Zifeng
    Li, Mengjie
    Su, Hai
    Yang, Jixing
    Xu, Yunhua
    ADVANCED ENERGY MATERIALS, 2021, 11 (38)