Research of technology for repair of heat exchangers of nuclear power plants by laser welding

被引:3
作者
Bernatskyi A. [1 ]
Sydorets V. [1 ]
Berdnikova O. [1 ]
Krivtsun I. [1 ]
Kushnarova O. [1 ]
机构
[1] E.O. Paton Electric Welding Institute of the NAS of Ukraine, 11, Kazymyra Malevycha str., Kyiv
关键词
Defects; Laser welding; Nuclear power plant; Quality; Repair; Stainless steel; Steam generator;
D O I
10.4028/www.scientific.net/SSP.313.94
中图分类号
学科分类号
摘要
Extending the lifetime of energy facilities is extremely important today. This is especially true of nuclear power plants, the closure (or modernization) of which poses enormous financial and environmental problems. High-quality repair of reactors can significantly extend their service life. One of the critical parts is heat exchangers, the tubes of which quite often fail. Sealing, as a type of repair of heat exchanger tubes by the plugs, is promising provided that the joint quality is high. Practical experience in the use of welding to solve this problem has shown the need to search technological solutions associated with increasing the depth of penetration and reducing the area of thermal effect. The aim of the work was to develop a highly efficient technology for repair and extension of service life of heat exchangers of nuclear power plants based on the results of studying the technological features of laser welding of joints of dissimilar austenitic steels AISI 321 and AISI 316Ti in the vertical spatial position. Based on the results of the analysis of mechanical test data, visual and radiographic control, impermeability tests and metallographic studies of welded joints, the appropriate modes of laser welding of plugs have been determined. The principal causes of defects during laser welding of annular welded joints of dissimilar stainless steels are determined and techniques for their elimination and prevention of their formation are proposed. Based on the results of the research, technological recommendations for laser welding of plugs in the heat exchange tube of the collector are formulated, which significantly improves the technology of repair of steam generators of nuclear power plants and extends the service life of reactors. © 2021 Trans Tech Publications Ltd, Switzerland.
引用
收藏
页码:94 / 105
页数:11
相关论文
共 56 条
[1]  
Ge B., Zhang J., Modeling of main steam and two-phase heat exchanger for nuclear power unit, 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, pp. 337-340, (2011)
[2]  
National atomic energy generating company “Energoatom”, Strategic development plan of the state enterprise, (2018)
[3]  
Bastida H., Ugalde-Loo C.E., Abeysekera M., Xu X., Qadrdan M., Dynamic modelling and control of counter-flow heat exchangers for heating and cooling systems, 2019 54th International Universities Power Engineering Conference (UPEC), pp. 1-6, (2019)
[4]  
Xu J., Wang R.Z., Li Y., A review of available technologies for seasonal thermal energy storage, Solar Energy, 103, pp. 610-638, (2014)
[5]  
Plankovskyy S., Tsegelnyk Y., Shypul O., Pankratov A., Romanova T., Cutting irregular objects from the rectangular metal sheet, Integrated Computer Technologies in Mechanical Engeneering, Advances in Intelligent Systems and Computing, 113, pp. 150-157, (2020)
[6]  
Baumann T., Zunft S., Tamme R., Moving bed heat exchangers for use with heat storage in concentrating solar plants: a multiphase model, Heat Transfer Eng, 35, pp. 224-231, (2013)
[7]  
Shelyagin V.D., Bernatskyi A.V., Berdnikova O.M., Sydorets V.M., Siora O.V., Gryhorenko S.G., Effect of technological features of laser welding of titanium-aluminium structures on the microstructure formation of welded joints, Metallofiz. Noveishie Tekhnol, 42, 3, pp. 363-379, (2020)
[8]  
Strelko O.H., Kyrychenko H.I., Berdnychenko Y.A., Sorochynska O.L., Pylypchuk O.Y., Application of information technologies for automation of railway and cargo owner interaction, IOP Conf. Ser. Mater. Sci. Eng, 582, 1, (2019)
[9]  
Chinakhov D.A., Grigorieva E.G., Mayorova E.I., Study of gasdynamic effect upon the weld geometry when consumable electrode welding, IOP Conf. Ser. Mater. Sci. Eng, 127, (2016)
[10]  
Middleton F., An all metal UHV flange seal for dissimilar materials, IEEE Trans. Nucl. Sci, 28, 3, pp. 3298-3299, (1981)