Interface engineering of highly stable CeO2/CoFe@C electrocatalysts for synergistically boosting overall alkaline water splitting performance

被引:2
作者
Yaseen, Waleed [1 ]
Harrath, Karim [2 ]
Li, Guangya [1 ]
Yusuf, Bashir Adegbemiga [1 ]
Meng, Suci [1 ]
Xie, Meng [1 ]
Khan, Iltaf [3 ]
Xie, Jimin [1 ,4 ]
Xia, Changkun [1 ]
Xu, Yuanguo [1 ]
机构
[1] Jiangsu Univ, Sch Mat Sci & Engn, Sch Chem & Chem Engn, Sch Pharm, Zhenjiang 212013, Peoples R China
[2] Chinese Acad Sci, Ganjiang Innovat Acad, Fundamental Sci Ctr Rare Earths, Ganzhou 341000, Peoples R China
[3] Jiangsu Univ Sci & Technol, Sch Environm & Chem Engn, Zhenjiang 212003, Peoples R China
[4] Jiangsu Jiangke Composite Mat Co LTD, Jiangsu Jiangke Graphene Res Inst Co LTD, Changzhou, Peoples R China
来源
INORGANIC CHEMISTRY FRONTIERS | 2024年 / 12卷 / 01期
基金
中国国家自然科学基金;
关键词
DOPED CARBON NANOTUBES; BIFUNCTIONAL ELECTROCATALYST; CEO2; NANOCRYSTALS; NANOPARTICLES; NANOSHEETS; HYDROGEN;
D O I
10.1039/d4qi02487g
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Electrochemical water splitting produces "green hydrogen," a clean, sustainable fuel that can eventually contribute to carbon neutrality. However, the big challenge to the widespread adoption of water-splitting technology is the complex synthesis routes that involve harmful or expensive chemicals and sluggish reaction kinetics. This work presents a scalable and environmentally friendly solvent-free strategy for in situ synthesis of highly dispersed CeO2/CoFe nanoparticles encapsulated within 3D hierarchically porous carbon heterostructures (CeO2/CoFe@C) via a simple pyrolysis process. The optimized Ce20/CoFe@C/750 catalyst shows low overpotentials of 114 and 191 mV at 10 mA cm-2 toward the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), respectively, in 1.0 M KOH. Two-electrode systems achieve a cell voltage of 1.508@10 mA cm-2 with robust stability over 500 h in 1.0 M KOH. This notable performance is attributed to the hierarchically porous nanosheet architecture with a superhydrophilic surface that facilitates mass transport, and rapid H2/O2 gas bubble escape, and the synergistically coupled CeO2/CoFe heterointerface and abundant oxygen vacancies boost overall activity, particularly for the OER. Additionally, experimental results indicate that the optimum performance depends critically on the effect of changing Ce concentration. Density functional theory (DFT) calculations suggest that optimizing the CeO2/CoFe interface triggered CeO2 reconstruction, where oxygen migration to CoFe created vacancies. Also, this reduction of the Ce site at the interface and the availability of d and f orbitals contribute to bonding and antibonding adsorbates, thereby moderating their adsorption energy and boosting OER activity. This study demonstrates the significance of rational design concepts in catalyst structure optimization, resulting in noticeably improved overall water-splitting performance.
引用
收藏
页码:273 / 290
页数:18
相关论文
共 88 条
[1]   Electrochemical Sensing Platforms of Dihydroxybenzene: Part 2-Nanomaterials Excluding Carbon Nanotubes and Graphene [J].
Abu Nayem, S. M. ;
Shaheen Shah, Syed ;
Sultana, Nasrin ;
Abdul Aziz, Md. ;
Saleh Ahammad, A. J. .
CHEMICAL RECORD, 2021, 21 (05) :1073-1097
[2]   Pore size and electronic tuning in cerium-doped CoFe-LDH for the oxygen evolution reaction [J].
Aggarwal, Parul ;
Singh, Bhupendra ;
Paul, Amit .
MATERIALS ADVANCES, 2023, 4 (19) :4377-4389
[3]   Multifunctional Mo-N/C@MoS2 Electrocatalysts for HER, OER, ORR, and Zn-Air Batteries [J].
Amiinu, Ibrahim Saana ;
Pu, Zonghua ;
Liu, Xiaobo ;
Owusu, Kwadwo Asare ;
Monestel, Hellen Gabriela Rivera ;
Boakye, Felix Ofori ;
Zhang, Haining ;
Mu, Shichun .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (44)
[4]   Understanding the direct methane conversion to oxygenates on graphene-supported single 3d metal atom catalysts [J].
Bahri, Leila ;
Mbarki, Faten ;
Harrath, Karim .
CHEMICAL PAPERS, 2023, 77 (07) :3759-3767
[5]   The CoMo-LDH ultrathin nanosheet as a highly active and bifunctional electrocatalyst for overall water splitting [J].
Bao, Jian ;
Wang, Zhaolong ;
Xie, Junfeng ;
Xu, Li ;
Lei, Fengcai ;
Guan, Meili ;
Huang, Yunpeng ;
Zhao, Yan ;
Xia, Jiexiang ;
Li, Huaming .
INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (11) :2964-2970
[6]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[7]   Phosphorus coordinated Co/Se2 heterointerface nanowires: in-situ catalyst reconstruction toward efficient overall water splitting in alkaline and seawater media [J].
Boakye, Felix Ofori ;
Harrath, Karim ;
Tabish, Mohammad ;
Yasin, Ghulam ;
Owusu, Kwadwo Asare ;
Ajmal, Saira ;
Zhang, Wenbin ;
Zhang, Haining ;
Wang, Yang-Gang ;
Zhao, Wei .
JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 969
[8]   Preparation of nano-Co3O4-coated Albizia procera-derived carbon by direct thermal decomposition method for electrochemical water oxidation [J].
Buliyaminu, Ismail A. ;
Aziz, Md Abdul ;
Shah, Syed Shaheen ;
Mohamedkhair, A. K. ;
Yamani, Zain H. .
ARABIAN JOURNAL OF CHEMISTRY, 2020, 13 (03) :4785-4796
[9]   Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources [J].
Cao, Zhen ;
Aharonian, F. A. ;
An, Q. ;
Axikegu ;
Bai, L. X. ;
Bai, Y. X. ;
Bao, Y. W. ;
Bastieri, D. ;
Bi, X. J. ;
Bi, Y. J. ;
Cai, H. ;
Cai, J. T. ;
Cao, Zhe ;
Chang, J. ;
Chang, J. F. ;
Chang, X. C. ;
Chen, B. M. ;
Chen, J. ;
Chen, L. ;
Chen, Liang ;
Chen, Long ;
Chen, M. J. ;
Chen, M. L. ;
Chen, Q. H. ;
Chen, S. H. ;
Chen, S. Z. ;
Chen, T. L. ;
Chen, X. L. ;
Chen, Y. ;
Cheng, N. ;
Cheng, Y. D. ;
Cui, S. W. ;
Cui, X. H. ;
Cui, Y. D. ;
Dai, B. Z. ;
Dai, H. L. ;
Dai, Z. G. ;
Danzengluobu ;
della Volpe, D. ;
Piazzoli, B. D' Ettorre ;
Dong, X. J. ;
Fan, J. H. ;
Fan, Y. Z. ;
Fan, Z. X. ;
Fang, J. ;
Fang, K. ;
Feng, C. F. ;
Feng, L. ;
Feng, S. H. ;
Feng, Y. L. .
NATURE, 2021, 594 (7861) :33-+
[10]   Multifunctional electrocatalyst based on MoCoFe LDH nanoarrays for the coupling of high efficiency Electro-Fenton and water splitting process [J].
Chen, Fengjiang ;
Liu, Hongchen ;
Yang, Fan ;
Che, Sai ;
Chen, Neng ;
Xu, Chong ;
Wu, Ni ;
Sun, Yankun ;
Yu, Chunhui ;
Li, Yongfeng .
CHEMICAL ENGINEERING JOURNAL, 2023, 467