Melatonin and calcium synergistically improve salt tolerance in alfalfa (Medicago sativa. L)

被引:1
|
作者
Guo, Shuaiqi [1 ]
Wang, Xiaotong [1 ]
Li, Xiaohong [1 ]
Ma, Yonglong [1 ]
Yang, Jinhui [1 ]
Fu, Bingzhe [1 ]
Li, Shuxia [1 ,2 ,3 ]
机构
[1] Ningxia Univ, Coll Forestry & Prataculture, Yinchuan 750021, Peoples R China
[2] Ningxia Grassland & Anim Husb Engn Technol Res Ctr, Yinchuan 750021, Peoples R China
[3] Minist Agr & Rural Affairs, Key Lab Model Innovat Forage Prod Efficiency, Yinchuan 750021, Peoples R China
关键词
Melatonin; Calcium; Salt stress; Alfalfa; Transcriptome; Signal transduction; GENE; HOMEOSTASIS; MECHANISMS; EXPRESSION; REGULATORS; TOXICITY; PROTEIN; ROLES; ACID;
D O I
10.1016/j.indcrop.2024.120322
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Salt stress has become a significant constraint on agricultural yield and plant development. Melatonin (MT) and calcium (Ca2 +) are well recognized as key elements in salt-stress resistance in plants. In spite of this, the underlying mechanisms governing the effects of MT and Ca2+ interplay on alfalfa (Medicago sativa L.) salt tolerance remain a mystery. This research sought to investigate the regulatory mechanisms of MT and Ca2+ in alfalfa salinity response through physiological and comparative transcriptome. Physiological results indicated that exogenous MT and CaCl2 alleviated salinity stress-induced damage to alfalfa, which was reflected by increased plant growth parameters, Ca2+ in the cytosol ([Ca2+]cyt), antioxidant enzyme activities, K+/Na+ ratio, endogenous MT content, and decreased of electrolyte leakage (EL) and superoxide anion (O2 center dot-) levels, especially when they were applied simultaneously. Transcriptome analysis suggested that MT and Ca2+ mainly regulated genes related to Ca2+ signal transduction, hormone signal transduction, photosynthesis, reactive oxygen species (ROS) metabolism and ion transport to mediate salt stress in alfalfa. Additionally, transcription factor (TF) families like ERF, bHLH, WRKY, and NAC were also active in salt stress response mediated by MT and Ca2+. Moreover, nine hub genes were identified by weighted gene co-expression network analysis (WGCNA). Overall, this research revealed that MT and Ca2+ exert a synergistic influence on the regulation of salinity resistance, offering valuable insights for the development of salt-tolerant alfalfa varieties.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Coexpression of ScNHX1 and ScVP in Transgenic Hybrids Improves Salt and Saline-Alkali Tolerance in Alfalfa (Medicago sativa L.)
    Liu, Liang
    Fan, Xiu-Duo
    Wang, Fa-Wei
    Wang, Nan
    Dong, Yuan-Yuan
    Liu, Xiu-Ming
    Yang, Jing
    Wang, Yan-Fang
    Li, Hai-Yan
    JOURNAL OF PLANT GROWTH REGULATION, 2013, 32 (01) : 1 - 8
  • [42] Comparative Proteomic Analysis Reveals That Antioxidant System and Soluble Sugar Metabolism Contribute to Salt Tolerance in Alfalfa (Medicago sativa L.) Leaves
    Gao, Yanli
    Long, Ruicai
    Rang, Junmei
    Wang, Zhen
    Zhang, Tiejun
    Sun, Hao
    Li, Xiao
    Yang, Qingchuan
    JOURNAL OF PROTEOME RESEARCH, 2019, 18 (01) : 191 - 203
  • [43] MsTHI1 overexpression improves drought tolerance in transgenic alfalfa (Medicago sativa L.)
    Yin, Hang
    Wang, Zhaoyu
    Li, Han
    Zhang, Yu
    Yang, Mei
    Cui, Guowen
    Zhang, Pan
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [44] MsDjB4, a HSP40 Chaperone in Alfalfa (Medicago sativa L.), Improves Alfalfa Hairy Root Tolerance to Aluminum Stress
    Liu, Siyan
    Mo, Xin
    Sun, Linjie
    Gao, Li
    Su, Liantai
    An, Yuan
    Zhou, Peng
    PLANTS-BASEL, 2023, 12 (15):
  • [45] Dehydrin variants associated with superior freezing tolerance in alfalfa (Medicago sativa L.)
    Remus-Borel, Wilfried
    Castonguay, Yves
    Cloutier, Jean
    Michaud, Real
    Bertrand, Annick
    Desgagnes, Rejean
    Laberge, Serge
    THEORETICAL AND APPLIED GENETICS, 2010, 120 (06) : 1163 - 1174
  • [46] Tissue specific changes in elements and organic compounds of alfalfa (Medicago sativa L.) cultivars differing in salt tolerance under salt stress
    Bhattarai, Surendra
    Liu, Na
    Karunakaran, Chithra
    Tanino, Karen K.
    Fu, Yong-Bi
    Coulman, Bruce
    Warkentin, Tom
    Biligetu, Bill
    JOURNAL OF PLANT PHYSIOLOGY, 2021, 264
  • [47] Comparative analysis of alfalfa (Medicago sativa L.) seedling transcriptomes reveals genotype-specific drought tolerance mechanisms
    Ma, Qiaoli
    Xu, Xing
    Wang, Wenjing
    Zhao, Lijuan
    Ma, Dongmei
    Xie, Yingzhong
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 166 : 203 - 214
  • [48] Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.)
    Bao, Ai-Ke
    Wang, Suo-Min
    Wu, Guo-Qiang
    Xi, Jie-Jun
    Zhang, Jin-Lin
    Wang, Chun-Mei
    PLANT SCIENCE, 2009, 176 (02) : 232 - 240
  • [49] Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (Medicago sativa L.)
    Li, Ruili
    Shi, Fuchen
    Fukuda, Kenji
    Yang, Yongli
    SOIL SCIENCE AND PLANT NUTRITION, 2010, 56 (05) : 725 - 733
  • [50] Citrate synthesis and exudation confer Al resistance in alfalfa (Medicago sativa L.)
    Sun, Guoli
    Zhu, Haifeng
    Wen, Shilin
    Liu, Lisheng
    Gou, Lanming
    Guo, Zhenfei
    PLANT AND SOIL, 2020, 449 (1-2) : 319 - 329