The Riemann-Hilbert approach for the nonlocal derivative nonlinear Schrödinger equation with nonzero boundary conditions

被引:3
作者
Liu, Xin-Yu [1 ]
Guo, Rui [1 ]
机构
[1] Taiyuan Univ Technol, Sch Math, Taiyuan 030024, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2025年 / 76卷 / 01期
关键词
Riemann-Hilbert approach; Reverse space-time derivative nonlinear Schr & ouml; dinger equation; Nonzero boundary conditions; INVERSE SCATTERING TRANSFORM; EXPLICIT SOLUTIONS;
D O I
10.1007/s00033-024-02395-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the nonlocal reverse space-time derivative nonlinear Schr & ouml;dinger equation under nonzero boundary conditions is investigated using the Riemann-Hilbert (RH) approach. The direct scattering problem focuses on the analyticity, symmetries, and asymptotic behaviors of the Jost eigenfunctions and scattering matrix functions, leading to the construction of the corresponding RH problem. Then, in the inverse scattering problem, the Plemelj formula is employed to solve the RH problem. So the reconstruction formula, trace formulae, theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} condition, and exact expression of the single-pole and double-pole solutions are obtained. Furthermore, dark-dark solitons, bright-dark solitons, and breather solutions of the reverse space-time derivative nonlinear Schr & ouml;dinger equation are presented along with their dynamic behaviors summarized through graphical simulation.
引用
收藏
页数:21
相关论文
共 38 条
[1]  
Ablowitz M., 1981, SOLITONS INVERSE SCA, DOI DOI 10.1137/1.9781611970883
[2]  
Ablowitz M. A., 1991, Solitons, Nonlinear Evolution Equations and Inverse Scattering, DOI DOI 10.1017/CBO9780511623998
[3]   Integrable nonlocal derivative nonlinear Schrodinger equations [J].
Ablowitz, Mark J. ;
Luo, Xu-Dan ;
Musslimani, Ziad H. ;
Zhu, Yi .
INVERSE PROBLEMS, 2022, 38 (06)
[4]   Reverse Space-Time Nonlocal Sine-Gordon/Sinh-Gordon Equations with Nonzero Boundary Conditions [J].
Ablowitz, Mark J. ;
Feng, Bao-Feng ;
Luo, Xu-Dan ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2018, 141 (03) :267-307
[5]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[6]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[7]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[8]  
Beals R., 1988, Direct and Inverse Scattering on the Line, DOI [10.1090/surv/028, DOI 10.1090/SURV/028]
[9]   Inverse scattering transform for the focusing nonlinear Schrodinger equation with nonzero boundary conditions [J].
Biondini, Gino ;
Kovacic, Gregor .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (03)
[10]   Integrable nonlocal Hirota equations [J].
Cen, Julia ;
Correa, Francisco ;
Fring, Andreas .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (08)