Two-step graph propagation for incomplete multi-view clustering

被引:0
作者
Zhang, Xiao [1 ,2 ]
Pu, Xinyu [3 ]
Che, Hangjun [3 ,4 ]
Liu, Cheng [5 ,6 ]
Qin, Jun [1 ,2 ]
机构
[1] South Cent Minzu Univ, Wuhan 430074, Peoples R China
[2] South Cent Minzu Univ, Key Lab Cyber Phys Fus Intelligent Comp, State Ethn Affairs Commiss, Wuhan 430074, Peoples R China
[3] Southwest Univ, Coll Elect & Informat Engn, Chongqing 400715, Peoples R China
[4] Chongqing Key Lab Nonlinear Circuits & Intelligent, Chongqing 400715, Peoples R China
[5] Shantou Univ, Dept Comp Sci, Shantou 515063, Peoples R China
[6] Shantou Univ, Guangdong Prov Key Lab Infect Dis & Mol Immunopath, Shantou 515063, Peoples R China
基金
中国国家自然科学基金;
关键词
Incomplete multi-view clustering; Graph propagation; Low-rank tensor; Stepwise optimization; FACTORIZATION;
D O I
10.1016/j.neunet.2024.106944
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Incomplete multi-view clustering addresses scenarios where data completeness cannot be guaranteed, diverging from traditional methods that assume fully observed features. Existing approaches often overlook high-order correlations present in multiple similarity graphs, and suffer from inefficiencies due to iterative optimization procedures. To overcome these limitations, we propose a graph-based model leveraging graph propagation to effectively handle incomplete data. The proposed method translates incomplete instances into incomplete graphs, and infers missing entries through a graph propagation strategy, ensuring the inferred data is meaningful and contextually relevant. Specifically, a self-guided graph is constructed to capture global relationships, while partial graphs represent view-specific similarities. The self-guided graph is first completed through self-guided graph propagation, which subsequently aids in the propagation of the partial graphs. The key contribution of graph propagation is to propagate information from complete data to incomplete data. Furthermore, the high-order correlation across multiple views is captured by low-rank tensor learning. To enhance computational efficiency, the optimization procedure is decoupled and implemented in a stepwise manner, eliminating the need for iterative updates. Extensive experiments validate the robustness of the proposed method, demonstrating superior performance compared to state-of-the-art methods, even when all instances are incomplete.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Localized Sparse Incomplete Multi-View Clustering
    Liu, Chengliang
    Wu, Zhihao
    Wen, Jie
    Xu, Yong
    Huang, Chao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5539 - 5551
  • [22] Incomplete multi-view clustering based on hypergraph
    Chen, Jin
    Xu, Huafu
    Xue, Jingjing
    Gao, Quanxue
    Deng, Cheng
    Lv, Ziyu
    INFORMATION FUSION, 2025, 117
  • [23] Joint learning of data recovering and graph contrastive denoising for incomplete multi-view clustering
    Wang, Haiyue
    Wang, Quan
    Miao, Qiguang
    Ma, Xiaoke
    INFORMATION FUSION, 2024, 104
  • [24] Incomplete Multi-View Clustering Based on Dynamic Dimensionality Reduction Weighted Graph Learning
    Yu, Yaosong
    Sun, Dongpu
    IEEE ACCESS, 2024, 12 : 19087 - 19099
  • [25] Self-Completed Bipartite Graph Learning for Fast Incomplete Multi-View Clustering
    Zhao, Xiaojia
    Shen, Qiangqiang
    Chen, Yongyong
    Liang, Yongsheng
    Chen, Junxin
    Zhou, Yicong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (04) : 2166 - 2178
  • [26] Dual structure-aware consensus graph learning for incomplete multi-view clustering
    Sun, Lilei
    Wong, Wai Keung
    Fu, Yusen
    Wen, Jie
    Li, Mu
    Lu, Yuwu
    Fei, Lunke
    PATTERN RECOGNITION, 2025, 165
  • [27] Structured anchor-inferred graph learning for universal incomplete multi-view clustering
    He, Wenjue
    Zhang, Zheng
    Chen, Yongyong
    Wen, Jie
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (01): : 375 - 399
  • [28] Low-rank Tensor Graph Learning Based Incomplete Multi-view Clustering
    Wen J.
    Yan K.
    Zhang Z.
    Xu Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (07): : 1433 - 1445
  • [29] Deep spectral clustering network for incomplete multi-view clustering
    Li, Ao
    Mei, Sanlin
    Feng, Cong
    Gao, Tianyu
    Huang, Hai
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [30] Incomplete multi-view clustering by simultaneously learning robust representations and optimal graph structures
    Shang, Mingchao
    Liang, Cheng
    Luo, Jiawei
    Zhang, Huaxiang
    INFORMATION SCIENCES, 2023, 640