A Robust optimization model for resource allocation problem with different time cycles

被引:0
作者
Nikoofal, Mohammad E. [1 ]
Sadjadi, Seyed J. [1 ]
机构
[1] Department of Industrial Engineering, Iran University of Science and Technology, Narmak, Tehran
关键词
Different time cycles; Linear; Programming; Resource allocation; Robust linear optimization; Stochastic;
D O I
10.3923/jas.2008.2462.2467
中图分类号
学科分类号
摘要
In this study, we consider a new robust resource allocation problem. The proposed method of this study consider an investment strategy where different investment alternatives may return in various time cycles and resources can be allocated only at the beginning of each period. We develop a mathematical formulation for the problem of robust resource allocation. The implementation of the proposed method is discussed through a numerical example. © 2008 Asian Network for Scientific Information.
引用
收藏
页码:2462 / 2467
页数:5
相关论文
共 19 条
  • [1] Averbakh I., Minmax regret linear resource allocation problems, Operat. Res. Lett., 32, 2, pp. 174-180, (2004)
  • [2] Ben-Tal A., Nemirovski A., Robust convex optimization, Math. Operat. Res., 23, 4, pp. 769-805, (1998)
  • [3] Ben-Tal A., Nemirovski A., Robust solutions of uncertain linear programs, Operat. Res. Lett., 25, 1, pp. 1-13, (1999)
  • [4] Ben-Tal A., Nemirovski A., Robust solutions of linear programming problems contaminated with uncertain data, Math. Programming, 88, 3, pp. 411-424, (2000)
  • [5] Bertsimas D., Sim M., Robust discrete optimization and network flows, Math. Programming, 98, 1-3, pp. 49-71, (2003)
  • [6] Bertsimas D., Sim M., Robust Discrete Opimization and Downside Risk Measures, (2004)
  • [7] Bertsimas D., Sim M., Price of Robustness, Operat. Res., 52, 1, pp. 35-53, (2004)
  • [8] Bertsimas D., Thiele A., A robust optimization approach to inventory theory, Operat. Res. Inform., 54, 1, pp. 150-168, (2006)
  • [9] Dantzig G., Linear programming under uncertainty, Manage. Sci., 1, 3-4, pp. 197-206, (1955)
  • [10] El-Ghaoui L., Oks M., Oustry F., Worstcase value-at-risk and robust portfolio optimization: A conic programming approach, Operat. Res., 51, 4, pp. 543-556, (2003)