Artificial fi cial intelligence for geoscience: Progress, challenges, and perspectives

被引:122
作者
Zhao, Tianjie [1 ]
Wang, Sheng [2 ]
Ouyang, Chaojun [3 ]
Chen, Min [4 ]
Liu, Chenying [5 ]
Zhang, Jin [6 ]
Yu, Long [2 ]
Wang, Fei [7 ,28 ]
Xie, Yong [8 ,29 ]
Li, Jun [2 ]
Wang, Fang [9 ,28 ,29 ]
Grunwald, Sabine [10 ]
Wong, Bryan M. [11 ,12 ]
Zhang, Fan [13 ]
Qian, Zhen [1 ]
Xu, Yongjun [4 ,7 ]
Yu, Chengqing [7 ]
Han, Wei [2 ]
Sun, Tao [7 ]
Shao, Zezhi [7 ,28 ]
Qian, Tangwen [7 ,28 ]
Chen, Zhao [7 ]
Zeng, Jiangyuan [2 ]
Zhang, Huai [1 ,14 ]
Letu, Husi [1 ,2 ]
Zhang, Bing [1 ,2 ]
Wang, Li [1 ,2 ]
Luo, Lei [2 ,15 ]
Shi, Chong [1 ,2 ]
Su, Hongjun [16 ]
Zhang, Hongsheng [17 ]
Yin, Shuai [1 ,2 ]
Huang, Ni [1 ,2 ]
Zhao, Wei [1 ,2 ]
Li, Nan [18 ,19 ]
Zheng, Chaolei [1 ,2 ]
Zhou, Yang [20 ]
Huang, Changping [1 ,2 ,28 ]
Feng, Defeng [28 ]
Xu, Qingsong [5 ]
Wu, Yan [21 ,28 ]
Hong, Danfeng [2 ,28 ]
Wang, Zhenyu [22 ]
Lin, Yinyi [13 ]
Zhang, Tangtang [23 ]
Kumar, Prashant [26 ,27 ]
Plaza, Antonio [24 ]
Chanussot, Jocelyn [25 ]
Zhang, Jiabao [9 ,28 ]
Shi, Jiancheng [30 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] China Univ Geosci, Sch Comp Sci, Wuhan 430078, Peoples R China
[3] Chinese Acad Sci, Inst Mt Hazards & Environm, State Key Lab Mt Hazards & Engn Resilience, Chengdu 610299, Peoples R China
[4] Nanjing Normal Univ, Key Lab Virtual Geog Environm, Minist Educ PRC, Nanjing 210023, Peoples R China
[5] Tech Univ Munich, Data Sci Earth Observat, D-80333 Munich, Germany
[6] Hohai Univ, Yangtze Inst Conservat & Dev, Natl Key Lab Water Disaster Prevent, Nanjing 210098, Peoples R China
[7] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[8] Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Nanjing 210044, Peoples R China
[9] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China
[10] Univ Florida, Soil Water & Ecosyst Sci Dept, POB 110290, Gainesville, FL USA
[11] Univ Calif Riverside, Mat Sci Engn Program, Dept Chem, Riverside, CA 92521 USA
[12] Univ Calif Riverside, Dept Phys Astron, Riverside, CA 92521 USA
[13] Peking Univ, Inst Remote Sensing & Geog Informat Syst, Sch Earth & Space Sci, Beijing 100871, Peoples R China
[14] Univ Chinese Acad Sci, Key Lab Computat Geodynam, Beijing 100049, Peoples R China
[15] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[16] Hohai Univ, Coll Geog & Remote Sensing, Nanjing 211100, Peoples R China
[17] Univ Hong Kong, Dept Geog, Hong Kong 999077, Peoples R China
[18] Jiangsu Key Lab Atmospher Environm Monitoring & Po, Nanjing 210044, Peoples R China
[19] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Engn, Nanjing 210044, Peoples R China
[20] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Key Lab Meteorol Disaster, Minist Educ, Nanjing 210044, Peoples R China
[21] Chinese Acad Sci, Key Lab Vertebrate Evolut & Human Origins, Inst Vertebrate Paleontol & Paleoanthropol, Beijing 100044, Peoples R China
[22] UFZ Helmholtz Ctr Environm Res, Dept Catchment Hydrol, D-06108 Halle, Saale, Germany
[23] Chinese Acad Sci, Key Lab Land Surface Proc & Climate Change Cold &, Lanzhou 730000, Peoples R China
[24] Univ Extremadura, Hyperspectral Comp Lab, Caceres 10003, Spain
[25] Univ Grenoble Alpes, CNRS, Grenoble INP, Inria,LJK, F-38000 Grenoble, France
[26] Univ Surrey, Fac Engn & Phys Sci, Global Ctr Clean Air Res GCARE, Sch Sustainabil Civil & Environm Engn, Guildford GU2 7XH, England
[27] Univ Surrey, Inst Sustainabil, Guildford GU2 7XH, Surrey, England
[28] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[29] Tech Univ Munich, Dept Chem, D-85748 Munich, Germany
[30] Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
来源
INNOVATION | 2024年 / 5卷 / 05期
基金
中国国家自然科学基金;
关键词
CONVOLUTIONAL NEURAL-NETWORK; MACHINE LEARNING-METHODS; SOIL-MOISTURE RETRIEVAL; DATA-DRIVEN DISCOVERY; EARTH SYSTEM MODELS; OF-THE-ART; PLANETARY SCIENCE; NEXT-GENERATION; DIGITAL EARTH; LAND-COVER;
D O I
10.1016/j.xinn.2024.100691
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper explores the evolution of geoscientific inquiry, tracing the progression from traditional physics-based models to modern data-driven approaches facilitated by significant advancements in artificial intelligence (AI) and data collection techniques. Traditional models, which are grounded in physical and numerical frameworks, provide robust explanations by explicitly reconstructing underlying physical processes. However, their limitations in comprehensively capturing Earth's complexities and uncertainties pose challenges in optimization and real-world applicability. In contrast, contemporary data-driven models, particularly those utilizing machine learning (ML) and deep learning (DL), leverage extensive geoscience data to glean insights without requiring exhaustive theoretical knowledge. ML techniques have shown promise in addressing Earth science-related questions. Nevertheless, challenges such as data scarcity, computational demands, data privacy concerns, and the "black-box" nature of AI models hinder their seamless integration into geoscience. The integration of physics-based and data-driven methodologies into hybrid models presents an alternative paradigm. These models, which incorporate domain knowledge to guide AI methodologies, demonstrate enhanced efficiency and performance with reduced training data requirements. This review provides a comprehensive overview of geoscientific research paradigms, emphasizing untapped opportunities at the intersection of advanced AI techniques and geoscience. It examines major methodologies, showcases advances in large-scale models, and discusses the challenges and prospects that will shape the future landscape of AI in geoscience. The paper outlines a dynamic field ripe with possibilities, poised to unlock new understandings of Earth's complexities and further advance geoscience exploration.
引用
收藏
页数:26
相关论文
共 494 条
  • [51] Chen C., 2012, An Unstructured-Grid, Finite-Volume Community Ocean Model: FVCOM User Manual, DOI [10.23919/oceans.2009.5422441, DOI 10.23919/OCEANS.2009.5422441]
  • [52] Evolution of the Yangtze River and its biodiversity
    Chen, Feng
    Xue, Ge
    Wang, Yeke
    Zhang, Hucai
    Clift, Peter D.
    Xing, Yaowu
    He, Jun
    Albert, James S.
    Chen, Jun
    Xie, Ping
    [J]. INNOVATION, 2023, 4 (03):
  • [53] A Machine Learning System for Precipitation Estimation Using Satellite and Ground Radar Network Observations
    Chen, Haonan
    Chandrasekar, V
    Cifelli, Robert
    Xie, Pingping
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (02): : 982 - 994
  • [54] Chen K., Deep Learning for Sensor-based Human Activity Recognition: Overview, Challenges and Opportunities, DOI DOI 10.1145/1122445.1122456
  • [55] Chen K, 2023, Arxiv, DOI arXiv:2304.02948
  • [56] FuXi: a cascade machine learning forecasting system for 15-day global weather forecast
    Chen, Lei
    Zhong, Xiaohui
    Zhang, Feng
    Cheng, Yuan
    Xu, Yinghui
    Qi, Yuan
    Li, Hao
    [J]. NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2023, 6 (01)
  • [57] Iterative integration of deep learning in hybrid Earth surface system modelling
    Chen, Min
    Qian, Zhen
    Boers, Niklas
    Jakeman, Anthony J.
    Kettner, Albert J.
    Brandt, Martin
    Kwan, Mei-Po
    Batty, Michael
    Li, Wenwen
    Zhu, Rui
    Luo, Wei
    Ames, Daniel P.
    Barton, C. Michael
    Cuddy, Susan M.
    Koirala, Sujan
    Zhang, Fan
    Ratti, Carlo
    Liu, Jian
    Zhong, Teng
    Liu, Junzhi
    Wen, Yongning
    Yue, Songshan
    Zhu, Zhiyi
    Zhang, Zhixin
    Sun, Zhuo
    Lin, Jian
    Ma, Zaiyang
    He, Yuanqing
    Xu, Kai
    Zhang, Chunxiao
    Lin, Hui
    Lue, Guonian
    [J]. NATURE REVIEWS EARTH & ENVIRONMENT, 2023, 4 (08) : 568 - 581
  • [58] Geographic modeling and simulation systems for geographic research in the new era: Some thoughts on their development and construction
    Chen, Min
    Lv, Guonian
    Zhou, Chenghu
    Lin, Hui
    Ma, Zaiyang
    Yue, Songshan
    Wen, Yongning
    Zhang, Fengyuan
    Wang, Jin
    Zhu, Zhiyi
    Xu, Kai
    He, Yuanqing
    [J]. SCIENCE CHINA-EARTH SCIENCES, 2021, 64 (08) : 1207 - 1223
  • [59] Unsupervised Plot-Scale LAI Phenotyping via UAV-Based Imaging, Modelling, and Machine Learning
    Chen, Qiaomin
    Zheng, Bangyou
    Chenu, Karine
    Hu, Pengcheng
    Chapman, Scott C.
    [J]. PLANT PHENOMICS, 2022, 2022
  • [60] Chen X., 2024, The Innovation Energy, V1