Artificial fi cial intelligence for geoscience: Progress, challenges, and perspectives

被引:122
作者
Zhao, Tianjie [1 ]
Wang, Sheng [2 ]
Ouyang, Chaojun [3 ]
Chen, Min [4 ]
Liu, Chenying [5 ]
Zhang, Jin [6 ]
Yu, Long [2 ]
Wang, Fei [7 ,28 ]
Xie, Yong [8 ,29 ]
Li, Jun [2 ]
Wang, Fang [9 ,28 ,29 ]
Grunwald, Sabine [10 ]
Wong, Bryan M. [11 ,12 ]
Zhang, Fan [13 ]
Qian, Zhen [1 ]
Xu, Yongjun [4 ,7 ]
Yu, Chengqing [7 ]
Han, Wei [2 ]
Sun, Tao [7 ]
Shao, Zezhi [7 ,28 ]
Qian, Tangwen [7 ,28 ]
Chen, Zhao [7 ]
Zeng, Jiangyuan [2 ]
Zhang, Huai [1 ,14 ]
Letu, Husi [1 ,2 ]
Zhang, Bing [1 ,2 ]
Wang, Li [1 ,2 ]
Luo, Lei [2 ,15 ]
Shi, Chong [1 ,2 ]
Su, Hongjun [16 ]
Zhang, Hongsheng [17 ]
Yin, Shuai [1 ,2 ]
Huang, Ni [1 ,2 ]
Zhao, Wei [1 ,2 ]
Li, Nan [18 ,19 ]
Zheng, Chaolei [1 ,2 ]
Zhou, Yang [20 ]
Huang, Changping [1 ,2 ,28 ]
Feng, Defeng [28 ]
Xu, Qingsong [5 ]
Wu, Yan [21 ,28 ]
Hong, Danfeng [2 ,28 ]
Wang, Zhenyu [22 ]
Lin, Yinyi [13 ]
Zhang, Tangtang [23 ]
Kumar, Prashant [26 ,27 ]
Plaza, Antonio [24 ]
Chanussot, Jocelyn [25 ]
Zhang, Jiabao [9 ,28 ]
Shi, Jiancheng [30 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] China Univ Geosci, Sch Comp Sci, Wuhan 430078, Peoples R China
[3] Chinese Acad Sci, Inst Mt Hazards & Environm, State Key Lab Mt Hazards & Engn Resilience, Chengdu 610299, Peoples R China
[4] Nanjing Normal Univ, Key Lab Virtual Geog Environm, Minist Educ PRC, Nanjing 210023, Peoples R China
[5] Tech Univ Munich, Data Sci Earth Observat, D-80333 Munich, Germany
[6] Hohai Univ, Yangtze Inst Conservat & Dev, Natl Key Lab Water Disaster Prevent, Nanjing 210098, Peoples R China
[7] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[8] Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Nanjing 210044, Peoples R China
[9] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China
[10] Univ Florida, Soil Water & Ecosyst Sci Dept, POB 110290, Gainesville, FL USA
[11] Univ Calif Riverside, Mat Sci Engn Program, Dept Chem, Riverside, CA 92521 USA
[12] Univ Calif Riverside, Dept Phys Astron, Riverside, CA 92521 USA
[13] Peking Univ, Inst Remote Sensing & Geog Informat Syst, Sch Earth & Space Sci, Beijing 100871, Peoples R China
[14] Univ Chinese Acad Sci, Key Lab Computat Geodynam, Beijing 100049, Peoples R China
[15] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[16] Hohai Univ, Coll Geog & Remote Sensing, Nanjing 211100, Peoples R China
[17] Univ Hong Kong, Dept Geog, Hong Kong 999077, Peoples R China
[18] Jiangsu Key Lab Atmospher Environm Monitoring & Po, Nanjing 210044, Peoples R China
[19] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Engn, Nanjing 210044, Peoples R China
[20] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Key Lab Meteorol Disaster, Minist Educ, Nanjing 210044, Peoples R China
[21] Chinese Acad Sci, Key Lab Vertebrate Evolut & Human Origins, Inst Vertebrate Paleontol & Paleoanthropol, Beijing 100044, Peoples R China
[22] UFZ Helmholtz Ctr Environm Res, Dept Catchment Hydrol, D-06108 Halle, Saale, Germany
[23] Chinese Acad Sci, Key Lab Land Surface Proc & Climate Change Cold &, Lanzhou 730000, Peoples R China
[24] Univ Extremadura, Hyperspectral Comp Lab, Caceres 10003, Spain
[25] Univ Grenoble Alpes, CNRS, Grenoble INP, Inria,LJK, F-38000 Grenoble, France
[26] Univ Surrey, Fac Engn & Phys Sci, Global Ctr Clean Air Res GCARE, Sch Sustainabil Civil & Environm Engn, Guildford GU2 7XH, England
[27] Univ Surrey, Inst Sustainabil, Guildford GU2 7XH, Surrey, England
[28] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[29] Tech Univ Munich, Dept Chem, D-85748 Munich, Germany
[30] Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
来源
INNOVATION | 2024年 / 5卷 / 05期
基金
中国国家自然科学基金;
关键词
CONVOLUTIONAL NEURAL-NETWORK; MACHINE LEARNING-METHODS; SOIL-MOISTURE RETRIEVAL; DATA-DRIVEN DISCOVERY; EARTH SYSTEM MODELS; OF-THE-ART; PLANETARY SCIENCE; NEXT-GENERATION; DIGITAL EARTH; LAND-COVER;
D O I
10.1016/j.xinn.2024.100691
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper explores the evolution of geoscientific inquiry, tracing the progression from traditional physics-based models to modern data-driven approaches facilitated by significant advancements in artificial intelligence (AI) and data collection techniques. Traditional models, which are grounded in physical and numerical frameworks, provide robust explanations by explicitly reconstructing underlying physical processes. However, their limitations in comprehensively capturing Earth's complexities and uncertainties pose challenges in optimization and real-world applicability. In contrast, contemporary data-driven models, particularly those utilizing machine learning (ML) and deep learning (DL), leverage extensive geoscience data to glean insights without requiring exhaustive theoretical knowledge. ML techniques have shown promise in addressing Earth science-related questions. Nevertheless, challenges such as data scarcity, computational demands, data privacy concerns, and the "black-box" nature of AI models hinder their seamless integration into geoscience. The integration of physics-based and data-driven methodologies into hybrid models presents an alternative paradigm. These models, which incorporate domain knowledge to guide AI methodologies, demonstrate enhanced efficiency and performance with reduced training data requirements. This review provides a comprehensive overview of geoscientific research paradigms, emphasizing untapped opportunities at the intersection of advanced AI techniques and geoscience. It examines major methodologies, showcases advances in large-scale models, and discusses the challenges and prospects that will shape the future landscape of AI in geoscience. The paper outlines a dynamic field ripe with possibilities, poised to unlock new understandings of Earth's complexities and further advance geoscience exploration.
引用
收藏
页数:26
相关论文
共 494 条
  • [11] Andrychowicz M, 2023, Arxiv, DOI arXiv:2306.06079
  • [12] [Anonymous], BepiColombo
  • [13] Araya Y.N., 2015, Hydrosphere, DOI [10.1002/047147844x.me216, DOI 10.1002/047147844X.ME216]
  • [14] Arnold J., 1994, SWAT-Soil and Water Assessment Tool, DOI [10.1007/springerreference_62887, DOI 10.1007/SPRINGERREFERENCE_62887]
  • [15] Artemis-NASA, ABOUT US
  • [16] UAV-based remote sensing in plant stress imagine using high-resolution thermal sensor for digital agriculture practices: a meta-review
    Awais M.
    Li W.
    Cheema M.J.M.
    Zaman Q.U.
    Shaheen A.
    Aslam B.
    Zhu W.
    Ajmal M.
    Faheem M.
    Hussain S.
    Nadeem A.A.
    Afzal M.M.
    Liu C.
    [J]. International Journal of Environmental Science and Technology, 2023, 20 (01) : 1135 - 1152
  • [17] Geography-Aware Self-Supervised Learning
    Ayush, Kumar
    Uzkent, Burak
    Meng, Chenlin
    Tanmay, Kumar
    Burke, Marshall
    Lobell, David
    Ermon, Stefano
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10161 - 10170
  • [18] Estimation of root zone soil moisture from ground and remotely sensed soil information with multisensor data fusion and automated machine learning
    Babaeian, Ebrahim
    Paheding, Sidike
    Siddique, Nahian
    Devabhaktuni, Vijay K.
    Tuller, Markus
    [J]. REMOTE SENSING OF ENVIRONMENT, 2021, 260 (260)
  • [19] The EPOS multi-disciplinary Data Portal for integrated access to solid Earth science datasets
    Bailo, Daniele
    Paciello, Rossana
    Michalek, Jan
    Cocco, Massimo
    Freda, Carmela
    Jeffery, Keith
    Atakan, Kuvvet
    [J]. SCIENTIFIC DATA, 2023, 10 (01)
  • [20] The sensitivity of vegetation cover to climate change in multiple climatic zones using machine learning algorithms
    Bao, Zhenxin
    Zhang, Jianyun
    Wang, Guoqing
    Guan, Tiesheng
    Jin, Junliang
    Liu, Yanli
    Li, Miao
    Ma, Tao
    [J]. ECOLOGICAL INDICATORS, 2021, 124