One-Way Quantum Repeater Based on Near-Deterministic Photon-Emitter Interfaces

被引:113
作者
Borregaard, Johannes [1 ,2 ,3 ]
Pichler, Hannes [4 ,5 ]
Schoder, Tim [6 ,7 ]
Lukin, Mikhail D. [5 ]
Lodahl, Peter [7 ]
Sorensen, Anders S. [7 ]
机构
[1] Univ Copenhagen, Dept Math Sci, QMATH, DK-2100 Copenhagen O, Denmark
[2] Delft Univ Technol, QuTech, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[3] Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[4] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[6] Humboldt Univ, Dept Phys, D-12489 Berlin, Germany
[7] Univ Copenhagen, Niels Bohr Inst, Ctr Hybrid Quantum Networks Hy Q, DK-2100 Copenhagen O, Denmark
基金
新加坡国家研究基金会; 欧洲研究理事会;
关键词
ENTANGLEMENT; SWITCH;
D O I
10.1103/PhysRevX.10.021071
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a novel one-way quantum repeater architecture based on photonic tree-cluster states. Encoding a qubit in a photonic tree cluster protects the information from transmission loss and enables long-range quantum communication through a chain of repeater stations. As opposed to conventional approaches that are limited by the two-way conimunication time, the overall transmission rate of the current quantum repeater protocol is determined by the local processing time enabling very high communication rates. We further show that such a repeater can be constructed with as little as two stationary qubits and one quantum emitter per repeater station, which significantly increases the experimental feasibility. We discuss potential implementations with diamond defect centers and semiconductor quantum dots efficiently coupled to photonic nanostructures and outline how such systems may be integrated into repeater stations.
引用
收藏
页数:13
相关论文
共 60 条
[1]   Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide [J].
Arcari, M. ;
Sollner, I. ;
Javadi, A. ;
Hansen, S. Lindskov ;
Mahmoodian, S. ;
Liu, J. ;
Thyrrestrup, H. ;
Lee, E. H. ;
Song, J. D. ;
Stobbe, S. ;
Lodahl, P. .
PHYSICAL REVIEW LETTERS, 2014, 113 (09)
[2]   All-photonic quantum repeaters [J].
Azuma, Koji ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
NATURE COMMUNICATIONS, 2015, 6
[3]   Coupling and entangling of quantum states in quantum dot molecules [J].
Bayer, M ;
Hawrylak, P ;
Hinzer, K ;
Fafard, S ;
Korkusinski, M ;
Wasilewski, ZR ;
Stern, O ;
Forchel, A .
SCIENCE, 2001, 291 (5503) :451-453
[4]   Experimental demonstration of memory-enhanced quantum communication [J].
Bhaskar, M. K. ;
Riedinger, R. ;
Machielse, B. ;
Levonian, D. S. ;
Nguyen, C. T. ;
Knall, E. N. ;
Park, H. ;
Englund, D. ;
Loncar, M. ;
Sukachev, D. D. ;
Lukin, M. D. .
NATURE, 2020, 580 (7801) :60-+
[5]  
Bluhm H, 2011, NAT PHYS, V7, P109, DOI [10.1038/nphys1856, 10.1038/NPHYS1856]
[6]   High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion [J].
Bock, Matthias ;
Eich, Pascal ;
Kucera, Stephan ;
Kreis, Matthias ;
Lenhard, Andreas ;
Becher, Christoph ;
Eschner, Juergen .
NATURE COMMUNICATIONS, 2018, 9
[7]   Super sensitivity and super resolution with quantum teleportation [J].
Borregaard, J. ;
Gehring, T. ;
Neergaard-Nielsen, J. S. ;
Andersen, U. L. .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[8]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[9]   Deterministic Generation of All-Photonic Quantum Repeaters from Solid-State Emitters [J].
Buterakos, Donovan ;
Barnes, Edwin ;
Economou, Sophia E. .
PHYSICAL REVIEW X, 2017, 7 (04)
[10]   Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide [J].
Daveau, Raphael S. ;
Balram, Krishna C. ;
Pregnolato, Tommaso ;
Liu, Jin ;
Lee, Eun H. ;
Song, Jin D. ;
Verma, Varun ;
Mirin, Richard ;
Nam, Sae Woo ;
Midolo, Leonardo ;
Stobbe, Soren ;
Srinivasan, Kartik ;
Lodahl, Peter .
OPTICA, 2017, 4 (02) :178-184