NUAH T-splines of odd bi-degree

被引:0
|
作者
Department of Mathematics, Zhejiang University, Hangzhou [1 ]
310027, China
机构
来源
Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao | / 6卷 / 1091-1098期
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Hyperbolic functions - Interpolation - Linear transformations
引用
收藏
相关论文
共 50 条
  • [1] NUAT T-splines of odd bi-degree and local refinement
    Duan Xiao-juan
    Wang Guo-zhao
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2014, 29 (04) : 410 - 421
  • [2] NUAT T-splines of odd bi-degree and local refinement
    DUAN Xiao-juan
    WANG Guo-zhao
    Applied Mathematics:A Journal of Chinese Universities, 2014, (04) : 410 - 421
  • [3] NUAT T-splines of odd bi-degree and local refinement
    DUAN Xiao-juan
    WANG Guo-zhao
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2014, 29 (04) : 410 - 421
  • [4] NUAT T-splines of odd bi-degree and local refinement
    Xiao-juan Duan
    Guo-zhao Wang
    Applied Mathematics-A Journal of Chinese Universities, 2014, 29 : 410 - 421
  • [5] On degree elevation of T-splines
    Zhang, Jingjing
    Li, Xin
    COMPUTER AIDED GEOMETRIC DESIGN, 2016, 46 : 16 - 29
  • [6] AS++ T-splines: arbitrary degree, nestedness and approximation
    Xiliang Li
    Xin Li
    Numerische Mathematik, 2021, 148 : 795 - 816
  • [7] AS plus plus T-splines: arbitrary degree, nestedness and approximation
    Li, Xiliang
    Li, Xin
    NUMERISCHE MATHEMATIK, 2021, 148 (04) : 795 - 816
  • [8] Modified T-splines
    Kang, Hongmei
    Chen, Falai
    Deng, Jiansong
    COMPUTER AIDED GEOMETRIC DESIGN, 2013, 30 (09) : 827 - 843
  • [9] Multivariate Analysis-Suitable T-Splines of Arbitrary Degree
    Hiniborch, Robin
    Morgenstern, Philipp
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (04) : 859 - 885
  • [10] T-splines and T-NURCCs
    Sederberg, TN
    Zheng, JM
    Bakenov, A
    Nasri, A
    ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03): : 477 - 484