Unsupervised domain adaptation with self-training for weed segmentation

被引:0
|
作者
Huang, Yingchao [1 ]
Hussein, Amina E. [2 ]
Wang, Xin [1 ]
Bais, Abdul [3 ]
Yao, Shanshan [4 ]
Wilder, Tanis [1 ]
机构
[1] Saskatchewan Polytech, Fac Digital Innovat Arts & Sci, Regina, SK S4S 5X1, Canada
[2] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2H5, Canada
[3] Univ Regina, Fac Engn & Appl Sci, Elect Syst Engn, Regina, SK S4S 0A2, Canada
[4] Univ Alberta, Civil & Environm Engn, Edmonton, AB T6G 2H5, Canada
来源
INTELLIGENT SYSTEMS WITH APPLICATIONS | 2025年 / 25卷
基金
加拿大自然科学与工程研究理事会;
关键词
Weed identification; Semantic segmentation; Domain adaptation; Self-training; Convolutional neural networks; Dynamic weights; SEMANTIC SEGMENTATION; NEURAL-NETWORKS; CLASSIFICATION; MANAGEMENT;
D O I
10.1016/j.iswa.2024.200468
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate crop and weed segmentation in varied field conditions is crucial for advancing automated weed management but remains challenging. Though promising, convolutional neural networks (CNNs) often experience performance drops when deployed in new field environments due to shifts between training and test data distributions. To address this limitation, we proposed a self-training framework using a teacher-student model that adapts CNNs for diverse agricultural contexts. Our method enhances generalization by co-training the student model on both the source domain and pseudo-labelled target domain generated by the teacher model, with teacher parameters updated via an exponential moving average of the student's model. The main contributions of this work areas follows: (1) we simplified the self-training procedure by using all target predictions, skipping the selection phase, and applying local dynamic weights (LDW) for target pixels during co-training; (2) we optimized iteration by monitoring covariance fluctuations to avoid pseudo-label overfitting and reduced the impact of false labels; (3) we addressed class imbalance with dynamic class weights (DCW) to give more importance to minority classes; and (4) we formulated a loss function integrating both LDW and DCW into the soft intersection over union (softIoU), enhancing weed segmentation effectiveness. We evaluated our framework with the ROSE challenge dataset across eight adaptations involving varied plants, robots, and growth stages, achieving up to a 0.17 mean IoU improvement over popular methods like CycleGAN. Our approach demonstrated consistent performance across diverse agricultural environments, supporting its use in real-field inference.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] MA-ST3D: Motion Associated Self-Training for Unsupervised Domain Adaptation on 3D Object Detection
    Zhang, Chi
    Chen, Wenbo
    Wang, Wei
    Zhang, Zhaoxiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 6227 - 6240
  • [32] Fast and Easy Sensor Adaptation With Self-Training
    Choi, Jinhyuk
    Lee, Byeongju
    Shin, Seho
    Ji, Daehyun
    IEEE ACCESS, 2023, 11 : 8870 - 8877
  • [33] Unsupervised Domain Adaptation in Semantic Segmentation: A Review
    Toldo, Marco
    Maracani, Andrea
    Michieli, Umberto
    Zanuttigh, Pietro
    TECHNOLOGIES, 2020, 8 (02)
  • [34] Multilevel Self-Training Approach for Cross-Domain Semantic Segmentation in Intelligent Vehicles
    Chen, Yung-Yao
    Jhong, Sin-Ye
    IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2024, 16 (01) : 148 - 161
  • [35] Enhanced Feature Alignment for Unsupervised Domain Adaptation of Semantic Segmentation
    Chen, Tao
    Wang, Shui-Hua
    Wang, Qiong
    Zhang, Zheng
    Xie, Guo-Sen
    Tang, Zhenmin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1042 - 1054
  • [36] Unsupervised Domain Adaptation for Remote Sensing Semantic Segmentation with Transformer
    Li, Weitao
    Gao, Hui
    Su, Yi
    Momanyi, Biffon Manyura
    REMOTE SENSING, 2022, 14 (19)
  • [37] Self-Training Based Adversarial Domain Adaptation for Radio Signal Recognition
    Liang, Zhi
    Xie, Jian
    Yang, Xin
    Tao, Mingliang
    Wang, Ling
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (11) : 2646 - 2650
  • [38] Machine Reading Comprehension Framework Based on Self-Training for Domain Adaptation
    Lee, Hyeon-Gu
    Jang, Youngjin
    Kim, Harksoo
    IEEE ACCESS, 2021, 9 : 21279 - 21285
  • [39] ST3D++: Denoised Self-Training for Unsupervised Domain Adaptation on 3D Object Detection
    Yang, Jihan
    Shi, Shaoshuai
    Wang, Zhe
    Li, Hongsheng
    Qi, Xiaojuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 6354 - 6371
  • [40] A multi camera unsupervised domain adaptation pipeline for object detection in cultural sites through adversarial learning and self-training
    Pasqualino, Giovanni
    Furnari, Antonino
    Farinella, Giovanni Maria
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 222