Effects of scattering on spectral shape and depth resolution in Fourier domain optical coherence tomography

被引:0
|
作者
机构
[1] Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences
[2] University of Chinese Academy of Sciences
[3] Carl Zeiss Shanghai Co. Ltd.
来源
Wang, X. (wxz26267@siom.ac.cn) | 1600年 / Chinese Optical Society卷 / 34期
关键词
Biotechnology; Optical coherence tomography; Optical imaging; Resolution; Scattering;
D O I
10.3788/AOS201434.0117001
中图分类号
学科分类号
摘要
The effects of scattering on interference spectral signal and depth resolution in Fourier domain optical coherence tomography are researched. The results obtained from theoretical analysis and simulation show that scattering of sample can change the measured spectral shape, which shifts to longer wavelength, and decrease the depth resolution of image. When the value of scattering coefficient is larger and the position in sample is deeper, the spectral signal will shift more seriously and the depth resolution will decrease more. The depth resolution can be improved by using the corresponding correction function.
引用
收藏
相关论文
共 13 条
  • [1] Fujimoto J.G., Drexler W., Introduction to Optical Coherence tomography, Optical Coherence Tomography Technology and Applications, pp. 1-45, (2008)
  • [2] Huang D., Swanson E.A., Lin C.P., Et al., Optical coherence tomography, Science, 254, 5035, pp. 1178-1181, (1991)
  • [3] Fercher A.F., Hitzenberger C.K., Kamp G., Et al., Measurement of intraocular distances by backscattering spectral interferometry, Opt Commun, 117, 1-2, pp. 43-48, (1995)
  • [4] Wojtkowski M., Leitgeb R., Kowalczyk A., Et al., In vivo human retinal imaging by Fourier domain optical coherence tomography, J Biomedical Opt, 7, 3, pp. 457-463, (2002)
  • [5] Leitgeb R., Hitzenberger C.K., Fercher A.F., Performance of Fourier domain versus time domain optical coherence tomography, Opt Express, 11, 8, pp. 889-894, (2003)
  • [6] Bouma B.E., Tearney G.J., Optical sources, Handbook of Optical Coherence Tomography, pp. 67-97, (2002)
  • [7] Fercher A.F., Hitzenberger C.K., Sticker M., Et al., Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography, Opt Express, 9, 12, pp. 610-615, (2001)
  • [8] Hitzenberger C.K., Baumgartner A., Drexler W., Et al., Dispersion effects in partial coherence interferometry: implications for intraocular ranging, J Biomedical Opt, 4, 1, pp. 144-151, (1999)
  • [9] Huang B., Bu P., Wang X., Et al., Optical coherence tomography based on depth resolved dispersion compensation, Acta Optica Sinica, 32, 2, (2012)
  • [10] Fujimoto J.G., Optical coherence tomography: introduction, Handbook of Optical Coherence Tomography, pp. 1-40, (2002)