Dynamic response of thermoelasticity based on Green-Lindsay theory and Caputo-Fabrizio fractional-order derivative

被引:0
|
作者
Guo, Ying [1 ]
Shi, Pengjie [1 ]
Ma, Jianjun [1 ]
Liu, Fengjun [1 ]
机构
[1] Henan Univ Sci & Technol, Sch Civil Engn, Luoyang 471023, Henan, Peoples R China
关键词
Thermoelastic theory; Caputo-Fabrizio fractional derivative; Laplace transform; Thermal relaxation factor; Moving heat source; GENERALIZED THERMOELASTICITY; MAGNETO-THERMOELASTICITY; HALF-SPACE; MODELS;
D O I
10.1016/j.icheatmasstransfer.2024.108334
中图分类号
O414.1 [热力学];
学科分类号
摘要
To extend the applicability and accuracy of the generalized thermoelasticity theory of thermoelasticity theory for one-dimensional problems involving a moving heat source, this study proposes a fractional-order thermoelasticity coupling theoretical model based on the Green-Lindsay theory and the Caputo-Fabrizio fractional-order derivative. The model's uniqueness and reciprocity are well established. To show its application, we analyzed the thermoelastic coupled dynamic response of a fixed-end rod subjected to a moving heat source. Using Laplace transforms and its numerical inverse method, the distribution patterns of non-dimensional displacement, temperature, and stress were obtained. A comprehensive analysis was conducted to investigate the effects of the fractional coefficient, two thermal relaxation time factors, and moving heat source speed on non-dimensional displacement, temperature, and stress. The findings reveal that the fractional coefficient and the speed of the moving heat source significantly influence all non-dimensional physical variables. While the two distinct thermal relaxation time factors have a minimal influence on the non-dimensional temperature, they exert a more pronounced effect on non-dimensional displacement and stress.
引用
收藏
页数:12
相关论文
共 32 条
  • [1] The vibration of a gold nanobeam under the thermoelasticity fractional-order strain theory based on Caputo-Fabrizio's definition
    AL-Lehaibi, Eman
    JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 2023, 58 (06) : 464 - 474
  • [2] A fractional order alcoholism model via Caputo-Fabrizio derivative
    Dokuyucu, Mustafa Ali
    AIMS MATHEMATICS, 2020, 5 (02): : 781 - 797
  • [3] CHARACTERISTIC ANALYSIS OF FRACTIONAL-ORDER RLC CIRCUIT BASED ON THE CAPUTO-FABRIZIO DEFINITION
    Liao, Xiaozhong
    Yu, Donghui
    Lin, Da
    Ran, Manjie
    Xia, Jinhui
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (04)
  • [4] Stability analysis of fractional-order linear system with time delay described by the Caputo-Fabrizio derivative
    Li, Hong
    Zhong, Shou-ming
    Cheng, Jun
    Li, Hou-biao
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [5] MODELING AND CHARACTERISTIC ANALYSIS OF FRACTIONAL-ORDER BOOST CONVERTER BASED ON THE CAPUTO-FABRIZIO FRACTIONAL DERIVATIVES
    Yu, Donghui
    Liao, Xiaozhong
    Wang, Yong
    Ran, Manjie
    Dalin, Jinhui
    Xia, Jinhui
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023,
  • [6] MODELING AND CHARACTERISTIC ANALYSIS OF FRACTIONAL-ORDER BOOST CONVERTER BASED ON THE CAPUTO-FABRIZIO FRACTIONAL DERIVATIVES
    Yu, Donghui
    Liao, Xiaozhong
    Wang, Yong
    Ran, Manjie
    Dalin
    Xia, Jinhui
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (07)
  • [7] Dynamics of Ebola virus transmission with vaccination control using Caputo-Fabrizio Fractional-order derivative analysis
    Yunus, Akeem Olarewaju
    Olayiwola, Morufu Oyedunsi
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2025, 11 (03)
  • [8] MODELING AND APPLICATIONS OF FRACTIONAL-ORDER MUTUAL INDUCTANCE BASED ON ATANGANA-BALEANU AND CAPUTO-FABRIZIO FRACTIONAL DERIVATIVES
    Liao, Xiaozhong
    Lin, Da
    Yu, Donghui
    Ran, Manjie
    Dong, Lei
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (04)
  • [9] On a nonlinear fractional order model of dengue fever disease under Caputo-Fabrizio derivative
    Shah, Kamal
    Jarad, Fahd
    Abdeljawad, Thabet
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) : 2305 - 2313
  • [10] Fractional-order strain of an infinite annular cylinder based on Caputo and Caputo–Fabrizio fractional derivatives under hyperbolic two-temperature generalized thermoelasticity theory
    Hamd M. Youssef
    Journal of Umm Al-Qura University for Engineering and Architecture, 2024, 15 (4): : 431 - 445