Repairing Reed-Solomon Codes Over Prime Fields via Exponential Sums

被引:0
|
作者
Con, Roni [1 ]
Shutty, Noah [2 ]
Tamo, Itzhak [3 ]
Wootters, Mary [4 ]
机构
[1] Tel Aviv Univ, Dept Comp Sci, IL-69978 Tel Aviv, Israel
[2] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
[3] Tel Aviv Univ, Dept Elect Engn, IL-69978 Tel Aviv, Israel
[4] Stanford Univ, Dept Comp Sci & Elect Engn, Stanford, CA 94305 USA
基金
欧洲研究理事会;
关键词
Reed-Solomon (RS) codes; repair problem; exponential sums; DISTRIBUTED STORAGE; REGENERATING CODES; KLOOSTERMAN;
D O I
10.1109/TIT.2024.3449041
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents two repair schemes for lowrate Reed-Solomon (RS) codes over prime fields that can repair any node by downloading a constant number of bits from each surviving node. The total bandwidth resulting from these schemes is greater than that incurred during trivial repair; however, this is particularly relevant in the context of leakage-resilient secret sharing. In that framework, our results provide attacks showing that k-out-of-n Shamir's Secret Sharing over prime fields for small k is not leakage-resilient, even when the parties leak only a constant number of bits. To the best of our knowledge, these are the first such attacks. Our results are derived from a novel connection between exponential sums and the repair of RS codes. Specifically, we establish that non-trivial bounds on certain exponential sums imply the existence of explicit nonlinear repair schemes for RS codes over prime fields.
引用
收藏
页码:8587 / 8594
页数:8
相关论文
共 34 条
  • [1] Repairing Reed-Solomon Codes
    Guruswami, Venkatesan
    Wootters, Mary
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (09) : 5684 - 5698
  • [2] Repairing Reed-Solomon Codes
    Guruswami, Venkatesan
    Wootters, Mary
    STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, : 216 - 226
  • [3] Repairing Reed-Solomon Codes Over GF(2l)
    Li, Weiqi
    Wang, Zhiying
    Jafarkhani, Hamid
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (01) : 34 - 37
  • [4] Balanced Reed-Solomon Codes
    Halbawi, Wael
    Liu, Zihan
    Hassibi, Babak
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 935 - 939
  • [5] Nonlinear Repair of Reed-Solomon Codes
    Con, Roni
    Tamo, Itzhak
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (08) : 5165 - 5177
  • [6] Recovering Reed-Solomon Codes Privately
    Kruglik, Stanislav
    Kiah, Han Mao
    Dau, Son Hoang
    Yaakobi, Eitan
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 2807 - 2821
  • [7] Hulls of Generalized Reed-Solomon Codes via Goppa Codes and Their Applications to Quantum Codes
    Gao, Yanyan
    Yue, Qin
    Huang, Xinmei
    Zhang, Jun
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (10) : 6619 - 6626
  • [8] Cooperative Repair of Reed-Solomon Codes via Linearized Permutation Polynomials
    Xu, Jingke
    Zhang, Yaqian
    Wang, Ke
    Zhang, Zhifang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (07) : 4747 - 4758
  • [9] A Transformation of Repairing Reed-Solomon Codes From Rack-Aware Storage Model to Homogeneous Storage Model
    Yang, Yumeng
    Cai, Han
    Tang, Xiaohu
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (11) : 6649 - 6659
  • [10] Balanced Reed-Solomon Codes for All Parameters
    Halbawi, Wael
    Liu, Zihan
    Hassibi, Babak
    2016 IEEE INFORMATION THEORY WORKSHOP (ITW), 2016,