Concept drift detection on stream data for revising DBSCAN

被引:0
|
作者
Miyata Y. [1 ]
Ishikawa H. [2 ]
机构
[1] Hitachi, Ltd., Research and Development Group, 1-280, Higashi-koigakubo, Kokubunji, Tokyo
[2] Tokyo Metropolitan University, 6-6, Asahigaoka, Hino, Tokyo
关键词
Clustering; Concept drift; Data stream mining; DBSCAN; Power grid;
D O I
10.1541/ieejeiss.140.949
中图分类号
学科分类号
摘要
Data stream mining of IoT data can support operator to immediately isolate causes of equipment alarms. The challenge, however, is to keep their classifiers high purity (the data ratio with same proper class in a cluster) with concept drifting ascribed to differences between alarm models and entities. We propose to continuously update data class according to their distribution changes. Through evaluation, no purity deterioration was verified for oscillation condition data with a drifting rate of 1%. The result suggested that the method improves operator decision making. © 2020 The Institute of Electrical Engineers of Japan.
引用
收藏
页码:949 / 955
页数:6
相关论文
共 50 条