Nonlinear mechanics of crystals

被引:73
作者
Clayton J.D. [1 ]
机构
[1] US Army Research Laboratory, RDRL-WMP-B, Bldg 390, Aberdeen Proving Ground
来源
Solid Mechanics and its Applications | 2011年 / 177卷
关键词
D O I
10.1007/978-94-007-0350-6_1
中图分类号
学科分类号
摘要
[No abstract available]
引用
收藏
页码:1 / 713
页数:712
相关论文
共 240 条
  • [1] Abeyaratne R., Knowles J.K., A continuum model of a thermoelastic solid capable of undergoing phase transitions, J Mech Phys Solids, 41, pp. 541-571, (1993)
  • [2] Abu Al-Rub R.K., Kim S.-M., Predicting mesh-independent ballistic limits for heterogeneous targets by a nonlocal damage computational framework, Composites B, 40, pp. 495-510, (2009)
  • [3] Abu Al-Rub R.K., Voyiadjis G.Z., A direct finite element implementation of the gradient-dependent theory, International Journal for Numerical Methods in Engineering, 63, 4, pp. 603-629, (2005)
  • [4] Abu Al-Rub R.K., Voyiadjis G.Z., A physically based gradient theory, Int J Plasticity, 22, pp. 654-684, (2006)
  • [5] Acharya A., A model of crystal plasticity based on the theory of continuously distributed dislocations, Journal of the Mechanics and Physics of Solids, 49, 4, pp. 761-784, (2001)
  • [6] Acharya A., Bassani J.L., Incompatible lattice deformations and crystal plasticity, Plastic and Fracture Instabilities in Materials, AMD, 200, pp. 75-80, (1995)
  • [7] Acharya A., Beaudoin A.J., Grain size effects in viscoplastic polycrystals at moderate strains, J Mech Phys Solids, 48, pp. 2213-2230, (2000)
  • [8] Ahzi S., Schoenfeld S.E., Mechanics of porous polycrystals: A fully anisotropic flow potential, International Journal of Plasticity, 14, 8, pp. 829-839, (1998)
  • [9] Aifantis E.C., The physics of plastic deformation, Int J Plasticity, 3, pp. 211-247, (1987)
  • [10] Allison F.E., Shock-induced polarization in plastics. I. Theory, J Appl Phys, 36, pp. 2111-2113, (1965)