Industrial brewery modelling by using artificial network

被引:0
|
作者
Assidjo, E. [1 ]
Yao, B. [1 ]
Amane, D. [1 ]
Ado, G. [1 ]
Azzaro-Pantel, C. [2 ]
Davin, A. [1 ]
机构
[1] Laboratoire de Procédés Industriels de Synthèse et de l'Environnement, Département Génie Chimique et Agroalimentaire, Institut National Polytechnique Houphouët-Boigny, Yamoussoukro
[2] Laboratoire de Génie Chimique, Département Procédés et Systèmes Industriels, UMR CNRS 5503, Toulouse Cedex 1
关键词
Artificial neural network; Brewery; Fermentation; Modelling;
D O I
10.3923/jas.2006.1858.1862
中图分类号
学科分类号
摘要
Fermentation is a complex phenomenon well studied which still provides challenges to brewers. In this study, artificial neural network, precisely multi layer perceptron and recurrent one were utilised for modelling either static (yeast quantity to add to wort for fermentation) or dynamic (fermentation process) phenomena. In both cases, the simulated responses are very close to the observed ones with residual biases inferior to 4.5%. Thus, ANN models present good predictive ability confirming the suitability of ANN for industrial process modelling. © 2006 Asian Network for Scientific Information.
引用
收藏
页码:1858 / 1862
页数:4
相关论文
共 50 条
  • [41] Water quality modelling using principal component analysis and artificial neural network
    Ibrahim, Aminu
    Ismail, Azimah
    Juahir, Hafizan
    Iliyasu, Aisha B.
    Wailare, Balarabe T.
    Mukhtar, Mustapha
    Aminu, Hassan
    MARINE POLLUTION BULLETIN, 2023, 187
  • [42] Optimisation and modelling of draft and rupture width using response surface methodology and artificial neural network for tillage tools
    Gautam, Prem Veer
    Tiwari, Prem Shanker
    Agrawal, Kamal Nayan
    Roul, Ajay Kumar
    Kumar, Manoj
    Singh, Karan
    SOIL RESEARCH, 2022, 60 (08) : 816 - 838
  • [43] Artificial Neural Network Application for Magnetic Core Width Prediction and Modelling
    Paguio, Hernan Jay S.
    Dadios, Elmer P.
    TENCON 2012 - 2012 IEEE REGION 10 CONFERENCE: SUSTAINABLE DEVELOPMENT THROUGH HUMANITARIAN TECHNOLOGY, 2012,
  • [44] Water quality modelling using artificial neural network and multivariate statistical techniques
    Hamza Ahmad Isiyaka
    Adamu Mustapha
    Hafizan Juahir
    Philip Phil-Eze
    Modeling Earth Systems and Environment, 2019, 5 : 583 - 593
  • [45] Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network
    Bryjak, J
    Ciesielski, K
    Zbicinski, I
    JOURNAL OF BIOTECHNOLOGY, 2004, 114 (1-2) : 177 - 185
  • [46] Artificial Neural Network modelling of sorption chillers
    Frey, Patrick
    Fischer, Stephan
    Drueck, Harald
    SOLAR ENERGY, 2014, 108 : 525 - 537
  • [47] Modelling the SOFC behaviours by artificial neural network
    Milewski, Jaroslaw
    Swirski, Konrad
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (13) : 5546 - 5553
  • [48] The artificial neural network modelling of the piezoelectric actuator vibrations using laser displacement sensor
    Parali, Levent
    Sari, Ali
    Kilic, Ulas
    Sahin, Ozge
    Pechousek, Jiri
    JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2017, 68 (05): : 371 - 377
  • [49] Underground blast induced ground shock and its modelling using artificial neural network
    Lu, Y
    COMPUTERS AND GEOTECHNICS, 2005, 32 (03) : 164 - 178
  • [50] Modelling the convective drying process of pumpkin (Cucurbita moschata) using an artificial neural network
    Onwude, D., I
    Hashim, N.
    Janius, R. B.
    Nawi, N.
    Abdan, K.
    INTERNATIONAL FOOD RESEARCH JOURNAL, 2016, 23 : S237 - S243