Industrial brewery modelling by using artificial network

被引:0
|
作者
Assidjo, E. [1 ]
Yao, B. [1 ]
Amane, D. [1 ]
Ado, G. [1 ]
Azzaro-Pantel, C. [2 ]
Davin, A. [1 ]
机构
[1] Laboratoire de Procédés Industriels de Synthèse et de l'Environnement, Département Génie Chimique et Agroalimentaire, Institut National Polytechnique Houphouët-Boigny, Yamoussoukro
[2] Laboratoire de Génie Chimique, Département Procédés et Systèmes Industriels, UMR CNRS 5503, Toulouse Cedex 1
关键词
Artificial neural network; Brewery; Fermentation; Modelling;
D O I
10.3923/jas.2006.1858.1862
中图分类号
学科分类号
摘要
Fermentation is a complex phenomenon well studied which still provides challenges to brewers. In this study, artificial neural network, precisely multi layer perceptron and recurrent one were utilised for modelling either static (yeast quantity to add to wort for fermentation) or dynamic (fermentation process) phenomena. In both cases, the simulated responses are very close to the observed ones with residual biases inferior to 4.5%. Thus, ANN models present good predictive ability confirming the suitability of ANN for industrial process modelling. © 2006 Asian Network for Scientific Information.
引用
收藏
页码:1858 / 1862
页数:4
相关论文
共 50 条
  • [21] River Water Quality Modelling using Artificial Neural Network Technique
    Sarkar, Archana
    Pandey, Prashant
    INTERNATIONAL CONFERENCE ON WATER RESOURCES, COASTAL AND OCEAN ENGINEERING (ICWRCOE'15), 2015, 4 : 1070 - 1077
  • [22] Modelling resorcinol adsorption in water environment using artificial neural network
    Aghav, Ramhari
    Mukherjee, Somnath
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL TECHNOLOGY AND MANAGEMENT, 2011, 14 (1-4) : 9 - 18
  • [23] Modelling and simulation of desalination process using artificial neural network: a review
    Mahadeva, Rajesh
    Manik, Gaurav
    Verma, Om Prakash
    Sinha, Shishir
    DESALINATION AND WATER TREATMENT, 2018, 122 : 351 - 364
  • [24] Predictive Modelling for Energy Consumption in Machining using Artificial Neural Network
    Kant, Girish
    Sangwan, Kuldip Singh
    CIRPE 2015 - UNDERSTANDING THE LIFE CYCLE IMPLICATIONS OF MANUFACTURING, 2015, 37 : 205 - 210
  • [25] Wind turbine power curve modelling using artificial neural network
    Pelletier, Francis
    Masson, Christian
    Tahan, Antoine
    RENEWABLE ENERGY, 2016, 89 : 207 - 214
  • [26] Modelling of a direct evaporative air cooler using artificial neural network
    Hosoz, M.
    Ertunc, H. M.
    Ozguc, A. F.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2008, 32 (01) : 83 - 89
  • [27] Precipitable water modelling using artificial neural network in Cukurova region
    Senkal, Ozan
    Yildiz, B. Yigit
    Sahin, Mehmet
    Pestemalci, Vedat
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2012, 184 (01) : 141 - 147
  • [28] Modelling on BLDC Motor Performance Using Artificial Neural Network (ANN)
    Nizam, Muhammad
    Mujianto, Agus
    Triwaloyo, Hery
    Inayati
    PROCEEDINGS OF THE 2013 JOINT INTERNATIONAL CONFERENCE ON RURAL INFORMATION & COMMUNICATION TECHNOLOGY AND ELECTRIC-VEHICLE TECHNOLOGY (RICT & ICEV-T), 2013,
  • [29] Modelling the deflection of reinforced concrete beams using the improved artificial neural network by imperialist competitive optimization
    Li, Ning
    Asteris, Panagiotis G.
    Tran, Trung-Tin
    Pradhan, Biswajeet
    Nguyen, Hoang
    STEEL AND COMPOSITE STRUCTURES, 2022, 42 (06) : 733 - 745
  • [30] Concentrate Grade Prediction in an Industrial Flotation Column Using Artificial Neural Network
    Nakhaeie, F.
    Sam, A.
    Mosavi, M. R.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2013, 38 (05) : 1011 - 1023