Guiding the crystal orientation to coordinate zinc deposition for high-durable zinc-ion batteries

被引:2
|
作者
Yang, Yi [1 ]
Liang, Qier [1 ]
Xie, Bin [1 ]
Zheng, Chaohe [2 ]
Liu, Shude [3 ]
Zhang, Lieyuan [1 ]
Luo, Yijia [1 ]
Hu, Qiang [4 ]
Ma, Haoyu [1 ]
Zhai, Yijun [1 ]
Huo, Yu [1 ]
Wu, Xingqiao [2 ]
Tan, Xin [2 ]
Zheng, Qiaoji [1 ]
Lin, Dunmin [1 ]
机构
[1] Sichuan Normal Univ, Coll Chem & Mat Sci, Chengdu 610066, Peoples R China
[2] Wenzhou Univ, Inst Carbon Neutralizat Technol, Coll Chem & Mat Engn, Wenzhou 325035, Zhejiang, Peoples R China
[3] Donghua Univ, Coll Text, Minist Educ, Engn Res Ctr Tech Text, Shanghai 201620, Peoples R China
[4] Univ Elect Sci & Technol China, Sch Mat & Energy, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous zinc-ion batteries; N-diethylchloroacetamide; Crystal orientation; Zinc deposition; Zn anode; METAL ANODES;
D O I
10.1016/j.ensm.2024.103967
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Zn(002) texture deposition with high thermodynamic stability is considered to be an efficient approach for mitigating dendrite growth and side reactions. However, attaining (002) plane-oriented Zn deposition is difficult because of significant lattice deformation and non-uniform electric field distribution. Herein, an electrolyte containing N, N-diethylchloroacetamide (CDEA) is proposed to regulate the epitaxial deposition of Zn2+. The CDEA molecule exhibits the preferential adsorption on Zn(101) via the polar -C = O group in CDEA, thereby promoting the predominant exposure of the Zn2+ plane with the lowest deposition rate on Zn(101), which in turn facilitates uniform Zn deposition along the Zn(101) orientation. Consequently, the asymmetrical Zn//Cu cell has exceptional cycling stability, exceeding 1700 cycles with an average coulombic efficiency (CE) of up to 99.72 %. Moreover, the Zn//VO2 full cell can stably maintain a high specific capacity of 245.5 mAh g - 1 even after 4000 cycles. The current work sheds new light on how to generate dendrite-free Zn anodes using crystal plane manipulation techniques.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Inhibition of zinc dendrites by dopamine modified hexagonal boron nitride electrolyte additive for zinc-ion batteries
    Su, Kailimai
    Chen, Jing
    Zhang, Xu
    Feng, Jianze
    Xu, Yongtai
    Pu, Yunxun
    Wang, Chengshuai
    Ma, Pengjun
    Wang, Yan
    Lang, Junwei
    JOURNAL OF POWER SOURCES, 2022, 548
  • [42] Charge polarity inversion and zincophilicity improvement for chitosan separator towards durable aqueous zinc-ion batteries
    Yu, Jiaqi
    Liu, Bo
    Ma, Hong
    Fan, Zehua
    Han, Xiang
    Tian, Qinghua
    Chen, Jizhang
    JOURNAL OF ENERGY CHEMISTRY, 2025, 101 : 110 - 119
  • [43] Design and Conformation of Separators for High-performance Aqueous Zinc-Ion Batteries
    Niu, Ben
    Luo, Die
    He, Xianru
    Wang, Xin
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (65)
  • [44] Regulating Zn deposition via an ion-sieving, nanoporous cellulose separator for high performance aqueous zinc-ion batteries
    Shi, Xiaorong
    Tan, Yongsong
    Zhang, Yongming
    Long, Zhu
    Wang, Chaoxia
    Dai, Lei
    Dong, Cuihua
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 287
  • [45] Engineering integrated structure for high-performance flexible zinc-ion batteries
    Liu, Yang
    Zhou, Xiaoming
    Bai, Yang
    Liu, Rong
    Li, Xiaolong
    Xiao, Huanhao
    Wang, Yuanming
    Wang, Xue
    Ma, Yu
    Yuan, Guohui
    CHEMICAL ENGINEERING JOURNAL, 2021, 417
  • [46] Intercalation engineering of layered vanadyl phosphates for high performance zinc-ion batteries
    Zhu, Kunjie
    Sun, Zhiqin
    Liu, Pei
    Li, Haixia
    Wang, Yijing
    Cao, Kangzhe
    Jiao, Lifang
    JOURNAL OF ENERGY CHEMISTRY, 2021, 63 : 239 - 245
  • [47] Electroactivation-induced hydrated zinc vanadate as cathode for high-performance aqueous zinc-ion batteries
    Luo, Ping
    Zhang, Wenwei
    Wang, Shiyu
    Liu, Gangyuan
    Xiao, Yao
    Zuo, Chunli
    Tang, Wen
    Fu, Xudong
    Dong, Shijie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 884
  • [48] Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries
    Du, Wencheng
    Ang, Edison Huixiang
    Yang, Yang
    Zhang, Yufei
    Ye, Minghui
    Li, Cheng Chao
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) : 3330 - 3360
  • [49] Understanding and Performance of the Zinc Anode Cycling in Aqueous Zinc-Ion Batteries and a Roadmap for the Future
    Shang, Yuan
    Kundu, Dipan
    BATTERIES & SUPERCAPS, 2022, 5 (05)
  • [50] Mixed copper-zinc hexacyanoferrates as cathode materials for aqueous zinc-ion batteries
    Kasiri, Ghoncheh
    Glenneberg, Jens
    Hashemi, Amir Bani
    Kun, Robert
    La Mantia, Fabio
    ENERGY STORAGE MATERIALS, 2019, 19 : 360 - 369