Guiding the crystal orientation to coordinate zinc deposition for high-durable zinc-ion batteries

被引:2
|
作者
Yang, Yi [1 ]
Liang, Qier [1 ]
Xie, Bin [1 ]
Zheng, Chaohe [2 ]
Liu, Shude [3 ]
Zhang, Lieyuan [1 ]
Luo, Yijia [1 ]
Hu, Qiang [4 ]
Ma, Haoyu [1 ]
Zhai, Yijun [1 ]
Huo, Yu [1 ]
Wu, Xingqiao [2 ]
Tan, Xin [2 ]
Zheng, Qiaoji [1 ]
Lin, Dunmin [1 ]
机构
[1] Sichuan Normal Univ, Coll Chem & Mat Sci, Chengdu 610066, Peoples R China
[2] Wenzhou Univ, Inst Carbon Neutralizat Technol, Coll Chem & Mat Engn, Wenzhou 325035, Zhejiang, Peoples R China
[3] Donghua Univ, Coll Text, Minist Educ, Engn Res Ctr Tech Text, Shanghai 201620, Peoples R China
[4] Univ Elect Sci & Technol China, Sch Mat & Energy, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous zinc-ion batteries; N-diethylchloroacetamide; Crystal orientation; Zinc deposition; Zn anode; METAL ANODES;
D O I
10.1016/j.ensm.2024.103967
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Zn(002) texture deposition with high thermodynamic stability is considered to be an efficient approach for mitigating dendrite growth and side reactions. However, attaining (002) plane-oriented Zn deposition is difficult because of significant lattice deformation and non-uniform electric field distribution. Herein, an electrolyte containing N, N-diethylchloroacetamide (CDEA) is proposed to regulate the epitaxial deposition of Zn2+. The CDEA molecule exhibits the preferential adsorption on Zn(101) via the polar -C = O group in CDEA, thereby promoting the predominant exposure of the Zn2+ plane with the lowest deposition rate on Zn(101), which in turn facilitates uniform Zn deposition along the Zn(101) orientation. Consequently, the asymmetrical Zn//Cu cell has exceptional cycling stability, exceeding 1700 cycles with an average coulombic efficiency (CE) of up to 99.72 %. Moreover, the Zn//VO2 full cell can stably maintain a high specific capacity of 245.5 mAh g - 1 even after 4000 cycles. The current work sheds new light on how to generate dendrite-free Zn anodes using crystal plane manipulation techniques.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Current Advances on Zn Anodes for Aqueous Zinc-Ion Batteries
    Li, Xin
    Zeng, Jiaming
    Yao, Hong
    Yuan, Du
    Zhang, Liping
    CHEMNANOMAT, 2021, 7 (11) : 1162 - 1176
  • [22] Zinc-Ion and Proton as Joint Charge Carriers of S-MoO2 for High-Capacity Aqueous Zinc-Ion Batteries
    Zhou, Zixuan
    Han, Mingming
    Sun, Yadi
    Cui, Yingxue
    El-khodary, Sherif A.
    Ng, Dickon H. L.
    Lian, Jiabiao
    Ma, Jianmin
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (07)
  • [23] Biological ion channel inspired interfacial protection layer for high-performance zinc-ion batteries
    Wang, Kai-Xin
    Yuan, Ru-Duan
    He, Yu-Ting
    Reng, Sheng-Hao
    Gou, Qian-Zhi
    Zhang, Si-Da
    Deng, Jiang-Bin
    Luogu, Zi-Ga
    Chen, Zhao-Yu
    Gu, Xing-Xing
    Li, Meng
    RARE METALS, 2025, 44 (02) : 912 - 924
  • [24] Recent advances in crystal plane regulation of zinc metal anodes for intrinsically safe aqueous zinc-ion batteries
    Zhang Z.
    Han D.
    Fan D.
    Tao Y.
    Weng Z.
    Yang Q.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42 (05): : 2504 - 2515
  • [25] Uniform Zn Deposition Achieved by Ag Coating for Improved Aqueous Zinc-Ion Batteries
    Lu, Qiongqiong
    Liu, Congcong
    Du, Yehong
    Wang, Xinyu
    Ding, Ling
    Omar, Ahmad
    Mikhailova, Dada
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (14) : 16869 - 16875
  • [26] Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives
    Yang, Jinzhang
    Yin, Bosi
    Sun, Ying
    Pan, Hongge
    Sun, Wenping
    Jia, Baohua
    Zhang, Siwen
    Ma, Tianyi
    NANO-MICRO LETTERS, 2022, 14 (01)
  • [27] Construct wave-like structure on the anode surface for achieving controllable zinc deposition in aqueous zinc-ion batteries
    Song, Wei-jia
    Wang, Jia-xin
    Tang, Peng-cheng
    Bao, Qing-peng
    Du, Li-li
    Wang, Peng-fei
    Gong, Zhe
    Shi, Fa-nian
    Zhu, Min
    JOURNAL OF ENERGY STORAGE, 2025, 115
  • [28] Electrolyte Additive Strategies for Suppression of Zinc Dendrites in Aqueous Zinc-Ion Batteries
    Zhai, Chongyuan
    Zhao, Dandi
    He, Yapeng
    Huang, Hui
    Chen, Buming
    Wang, Xue
    Guo, Zhongcheng
    BATTERIES-BASEL, 2022, 8 (10):
  • [29] Tuning the distribution of zinc ions by manganese dioxide ion sieve to realize the uniform deposition of zinc ions on Zn metal anode of aqueous zinc-ion batteries
    Liu, Yu
    Li, Qingping
    Zhang, Xiaoqin
    Dong, Yingxia
    Cao, Heng
    Huang, Xiaomin
    Li, Yuanxia
    Zheng, Qiaoji
    Zhao, Jingxin
    Lin, Dunmin
    CERAMICS INTERNATIONAL, 2023, 49 (16) : 27506 - 27513
  • [30] Nanostructure Design Strategies for Aqueous Zinc-Ion Batteries
    Ling, Wei
    Wang, Panpan
    Chen, Zhe
    Wang, Hua
    Wang, Jiaqi
    Ji, Zhenyuan
    Fei, Jinbo
    Ma, Zhiyuan
    He, Ning
    Huang, Yan
    CHEMELECTROCHEM, 2020, 7 (14) : 2957 - 2978