Instability of the solitary wave solutions for the generalized derivative nonlinear Schrodinger equation in the endpoint case
被引:1
|
作者:
Li, Bing
论文数: 0引用数: 0
h-index: 0
机构:
Chengdu Univ Technol, Sch Math Sci, Chengdu 610059, Peoples R ChinaChengdu Univ Technol, Sch Math Sci, Chengdu 610059, Peoples R China
Li, Bing
[1
]
Ning, Cui
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Finance, Sch Financial Math & Stat, Guangzhou 510521, Guangdong, Peoples R ChinaChengdu Univ Technol, Sch Math Sci, Chengdu 610059, Peoples R China
Ning, Cui
[2
]
机构:
[1] Chengdu Univ Technol, Sch Math Sci, Chengdu 610059, Peoples R China
[2] Guangdong Univ Finance, Sch Financial Math & Stat, Guangzhou 510521, Guangdong, Peoples R China
Generalized DNLS;
Orbital instability;
Solitary wave solutions;
Endpoint case;
GLOBAL WELL-POSEDNESS;
ORBITAL STABILITY;
UNIQUENESS;
EXISTENCE;
SCATTERING;
REGULARITY;
D O I:
10.1016/j.na.2024.113713
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider the stability theory of solitary wave solutions for the generalized derivative nonlinear Schrodinger equation i partial derivative(t)u + partial derivative(2)(x)u + i vertical bar u vertical bar(2 sigma)partial derivative(x)u = 0, where 1 < sigma < 2. The equation has a two-parameter family of solitary wave solutions of the form u(omega,c)(t,x) = e(t omega t+tc/2(x-ct)-t/2 sigma+2) integral(-infinity x-ci) phi(omega,c2 sigma(y)dy) phi((x-ct)(omega,c)). The stability theory in the frequency region of vertical bar c vertical bar < 2 root omega was thoroughly studied previously. In this paper, we prove the instability of the solitary wave solutions in the endpoint case c = 2 root omega.
机构:
South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R ChinaSouth China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
Ning, Cui
Ohta, Masahito
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, JapanSouth China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
Ohta, Masahito
Wu, Yifei
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R ChinaSouth China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
机构:
Tokyo Univ Sci, Grad Sch Sci, Dept Math, 1-3 Kagurazaka, Tokyo 1628601, JapanTokyo Univ Sci, Grad Sch Sci, Dept Math, 1-3 Kagurazaka, Tokyo 1628601, Japan
机构:
E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China
Inner Mongolia Normal Univ, Coll Math Sci, Hohhot 010022, Peoples R ChinaE China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China
Zha Qi-Lao
Li Zhi-Bin
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R ChinaE China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China
机构:
Nanjing Normal Univ, Inst Math, Dept Math, Nanjing 210097, Peoples R ChinaNanjing Normal Univ, Inst Math, Dept Math, Nanjing 210097, Peoples R China
Sun, Chengfeng
Gao, Hongjun
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Inst Math, Dept Math, Nanjing 210097, Peoples R ChinaNanjing Normal Univ, Inst Math, Dept Math, Nanjing 210097, Peoples R China