Adaptive compressed learning boosts both efficiency and utility of differentially private federated learning

被引:0
|
作者
Li, Min [1 ]
Xiao, Di [1 ]
Chen, Lvjun [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Federated learning; Adaptive compressed learning; Differential privacy; High-efficient communication; Compressed sensing; INFERENCE; SECURITY;
D O I
10.1016/j.sigpro.2024.109742
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the federated learning (FL) research field, current research is confronted with several pivotal challenges, e.g., data privacy, model utility and communication efficiency. Furthermore, these challenges are further amplified by statistical data heterogeneous in the FL system. Thus, a novel C ommunication-efficient and U tility- assured G aussian differential privacy-based P ersonalized F ederated A daptive C ompressed L earning method, called CUG-PFACL, is proposed. Specifically, an end-to-end local adaptive compressed learning strategy is designed, including three crucial modules, namely the measurement matrix, the personalized compressed data transformation and the local model. Especially, jointly training the measurement matrix module and the personalized compressed data transformation module can mitigate the inherent statistical heterogeneity while preserving all important characteristics of the compressed private data of each local client, and alleviate the additional heterogeneity induced by Gaussian differential privacy in each global communication round. Numerous experimental simulation and comparisons demonstrate that CUG-PFACL has three notable advantages: data privacy guarantee, enhanced personalized model utility and high-efficient communication.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Local differentially private federated learning with homomorphic encryption
    Zhao, Jianzhe
    Huang, Chenxi
    Wang, Wenji
    Xie, Rulin
    Dong, Rongrong
    Matwin, Stan
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (17) : 19365 - 19395
  • [32] Local differentially private federated learning with homomorphic encryption
    Jianzhe Zhao
    Chenxi Huang
    Wenji Wang
    Rulin Xie
    Rongrong Dong
    Stan Matwin
    The Journal of Supercomputing, 2023, 79 : 19365 - 19395
  • [33] Differentially Private Federated Learning for Multitask Objective Recognition
    Xie, Renyou
    Li, Chaojie
    Zhou, Xiaojun
    Chen, Hongyang
    Dong, Zhaoyang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (05) : 7269 - 7281
  • [34] Boosting Accuracy of Differentially Private Continuous Data Release for Federated Learning
    Cai, Jianping
    Ye, Qingqing
    Hu, Haibo
    Liu, Ximeng
    Fu, Yanggeng
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 10287 - 10301
  • [35] Analyze and Improve Differentially Private Federated Learning: A Model Robustness Perspective
    Zhang, Shuaishuai
    Huang, Jie
    Li, Peihao
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 807 - 821
  • [36] Differentially private federated learning with local momentum updates and gradients filtering
    Zhang, Shuaishuai
    Huang, Jie
    Li, Peihao
    Liang, Chuang
    INFORMATION SCIENCES, 2024, 680
  • [37] Profit-Maximizing Model Marketplace with Differentially Private Federated Learning
    Sun, Peng
    Chen, Xu
    Liao, Guocheng
    Huang, Jianwei
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2022), 2022, : 1439 - 1448
  • [38] Personalized Differentially Private Federated Learning without Exposing Privacy Budgets
    Liu, Junxu
    Lou, Jian
    Xiong, Li
    Meng, Xiaofeng
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 4140 - 4144
  • [39] CSRA: Robust Incentive Mechanism Design for Differentially Private Federated Learning
    Yang, Yunchao
    Hu, Miao
    Zhou, Yipeng
    Liu, Xuezheng
    Wu, Di
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 892 - 906
  • [40] Joint Client Selection and Privacy Compensation for Differentially Private Federated Learning
    Xu, Ruichen
    Zhang, Ying-Jun Angela
    Huang, Jianwei
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS, INFOCOM WKSHPS 2024, 2024,