Adaptive compressed learning boosts both efficiency and utility of differentially private federated learning

被引:0
|
作者
Li, Min [1 ]
Xiao, Di [1 ]
Chen, Lvjun [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Federated learning; Adaptive compressed learning; Differential privacy; High-efficient communication; Compressed sensing; INFERENCE; SECURITY;
D O I
10.1016/j.sigpro.2024.109742
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the federated learning (FL) research field, current research is confronted with several pivotal challenges, e.g., data privacy, model utility and communication efficiency. Furthermore, these challenges are further amplified by statistical data heterogeneous in the FL system. Thus, a novel C ommunication-efficient and U tility- assured G aussian differential privacy-based P ersonalized F ederated A daptive C ompressed L earning method, called CUG-PFACL, is proposed. Specifically, an end-to-end local adaptive compressed learning strategy is designed, including three crucial modules, namely the measurement matrix, the personalized compressed data transformation and the local model. Especially, jointly training the measurement matrix module and the personalized compressed data transformation module can mitigate the inherent statistical heterogeneity while preserving all important characteristics of the compressed private data of each local client, and alleviate the additional heterogeneity induced by Gaussian differential privacy in each global communication round. Numerous experimental simulation and comparisons demonstrate that CUG-PFACL has three notable advantages: data privacy guarantee, enhanced personalized model utility and high-efficient communication.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] AdaDpFed: A Differentially Private Federated Learning Algorithm With Adaptive Noise on Non-IID Data
    Zhao, Zirun
    Sun, Yi
    Bashir, Ali Kashif
    Lin, Zhaowen
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 2536 - 2545
  • [22] FedRecovery: Differentially Private Machine Unlearning for Federated Learning Frameworks
    Zhang, Lefeng
    Zhu, Tianqing
    Zhang, Haibin
    Xiong, Ping
    Zhou, Wanlei
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 4732 - 4746
  • [23] Incentivizing Differentially Private Federated Learning: A Multidimensional Contract Approach
    Wu, Maoqiang
    Ye, Dongdong
    Ding, Jiahao
    Guo, Yuanxiong
    Yu, Rong
    Pan, Miao
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (13) : 10639 - 10651
  • [24] Differentially Private federated learning to Protect Identity in Stress Recognition
    Guelta, Bouchiba
    Benbakreti, Samir
    Boumediene, Kadda
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (06): : 36 - 41
  • [25] An Optimized Sparse Response Mechanism for Differentially Private Federated Learning
    Ma, Jiating
    Zhou, Yipeng
    Cui, Laizhong
    Guo, Song
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (04) : 2285 - 2295
  • [26] A Socially Optimal Data Marketplace With Differentially Private Federated Learning
    Sun, Peng
    Liao, Guocheng
    Chen, Xu
    Huang, Jianwei
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2024, 32 (03) : 2221 - 2236
  • [27] Reinforcement Learning-Based Personalized Differentially Private Federated Learning
    Lu, Xiaozhen
    Liu, Zihan
    Xiao, Liang
    Dai, Huaiyu
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 465 - 477
  • [28] Concentrated Differentially Private Federated Learning With Performance Analysis
    Hu, Rui
    Guo, Yuanxiong
    Gong, Yanmin
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2021, 2 : 276 - 289
  • [29] Distributionally Robust Federated Learning for Differentially Private Data
    Shi, Siping
    Hu, Chuang
    Wang, Dan
    Zhu, Yifei
    Han, Zhu
    2022 IEEE 42ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2022), 2022, : 842 - 852
  • [30] Differentially Private Federated Learning with Heterogeneous Group Privacy
    Jiang, Mingna
    Wei, Linna
    Cai, Guoyue
    Wu, Xuangou
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 143 - 150