Ultrasensitive Detection of Chemokines in Clinical Samples with Graphene-Based Field-Effect Transistors

被引:1
作者
Kaiser, David [1 ]
Meyerbroeker, Nikolaus [2 ]
Purschke, Werner [3 ,4 ]
Sell, Simone [4 ]
Neumann, Christof [1 ]
Winter, Andreas [1 ]
Tang, Zian [1 ]
Hueger, Daniel [1 ]
Maasch, Christian [3 ]
Bethge, Lucas [3 ]
Weimann, Thomas [5 ]
Ferwerda, Gerben [6 ]
de Jonge, Marien I. [6 ]
Schnieders, Albert [2 ]
Vater, Axel [3 ,4 ]
Turchanin, Andrey [1 ,7 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Phys Chem, D-07743 Jena, Germany
[2] CNM Technol GmbH, D-33609 Bielefeld, Germany
[3] NOXXON Pharm AG, D-10589 Berlin, Germany
[4] APTAR Biotech AG, D-10589 Berlin, Germany
[5] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany
[6] Radboud Univ Nijmegen, Med Ctr, Lab Med Immunol, NL-6525 GA Nijmegen, Netherlands
[7] Jena Ctr Soft Matter, D-07743 Jena, Germany
基金
欧盟地平线“2020”;
关键词
biosensors; carbon nanomembranes; graphene; van der Waals heterostructures; solution-gated field-effect transistors; SELF-ASSEMBLED MONOLAYERS; GOLD;
D O I
10.1002/adma.202407487
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Due to their ultra-high sensitivity, solution-gated graphene-based field-effect transistors (SG-GFET) have been proposed for applications in bio-sensing. However, challenges regarding the functionalization of GFETs have prevented their applications in clinical diagnostics so far. Here GFET sensors based on van der Waals (vdW) heterostructures of single-layer graphene layered with a molecular approximate to 1 nm thick carbon nanomembrane (CNM) are presented. The CNM acts as an ultrathin molecular interposer between the graphene channel and the analyte and allows bio-functionalization without impairing the graphene properties including its charge carrier mobility. To achieve specificity and reliability in the detection of biomarkers in real patient samples, the functionalization incorporates biostable aptamers in the non-natural l-configuration and hydrophilic polyethylene glycol for avoiding non-specific adsorption. A rapid (approximate to 5 min) detection of the clinically relevant inflammatory mediator CXCL8/IL-8 within the concentration range of 0.5 - 500 pM (5 - 5000 pg ml-1) is demonstrated in nasal swab samples collected from patients with respiratory tract infections. This detection range may aid in diagnostics of early-stage infectious diseases making the reported approach promising for the development of future medical tools.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Modeling of graphene-based field-effect transistors through a 1-D real-space approach
    Rawat, Brajesh
    Paily, Roy
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2018, 17 (01) : 90 - 100
  • [22] Modeling of graphene-based field-effect transistors through a 1-D real-space approach
    Brajesh Rawat
    Roy Paily
    Journal of Computational Electronics, 2018, 17 : 90 - 100
  • [23] Attomolar Label-Free Detection of DNA Hybridization with Electrolyte-Gated Graphene Field-Effect Transistors
    Campos, Rui
    Borme, Jerome
    Guerreiro, Joana Rafaela
    Machado, George, Jr.
    Cerqueira, Maria Fatima
    Petrovykh, Dmitri Y.
    Alpuim, Pedro
    ACS SENSORS, 2019, 4 (02) : 286 - 293
  • [24] Graphene field-effect transistors: the road to bioelectronics
    Donnelly, Matthew
    Mao, Dacheng
    Park, Junsu
    Xu, Guangyu
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (49)
  • [25] Simulation of graphene nanoribbon field-effect transistors
    Fiori, Gianluca
    Iannaccone, Giuseppe
    IEEE ELECTRON DEVICE LETTERS, 2007, 28 (08) : 760 - 762
  • [26] Supramolecular Chemistry on Graphene Field-Effect Transistors
    Zhang, Xiaoyan
    Huisman, Everardus H.
    Gurram, Mallikarjuna
    Browne, Wesley R.
    van Wees, Bart J.
    Feringa, Ben L.
    SMALL, 2014, 10 (09) : 1735 - 1740
  • [27] The effect of traps on the performance of graphene field-effect transistors
    Zhu, J.
    Jhaveri, R.
    Woo, J. C. S.
    APPLIED PHYSICS LETTERS, 2010, 96 (19)
  • [28] A Highly Sensitive Graphene-based Field Effect Transistor for the Detection of Myoglobin
    Krsihna, B. Vamsi
    Gangadhar, A.
    Ravi, S.
    Mohan, D.
    Panigrahy, Asisa Kumar
    Rajeswari, V. Raja
    Prakash, M. Durga
    SILICON, 2022, 14 (17) : 11741 - 11748
  • [29] Modeling Techniques for Graphene Field-effect Transistors
    Lu, Haiyan
    Wu, Yun
    Huo, Shuai
    Xu, Yuehang
    Kong, Yuechan
    Chen, Tangshen
    2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION PROBLEM-SOLVING (ICCP), 2015, : 373 - 376
  • [30] Effect of energetic electron irradiation on graphene and graphene field-effect transistors
    Childres, Isaac
    Foxe, Michael
    Jovanovic, Igor
    Chen, Yong P.
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS III, 2011, 8031