MS-DINO: Masked Self-Supervised Distributed Learning Using Vision Transformer

被引:1
|
作者
Park, Sangjoon [1 ,2 ,3 ]
Lee, Ik Jae [4 ]
Kim, Jun Won [4 ]
Ye, Jong Chul [5 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South Korea
[2] Yonsei Univ, Coll Med, Dept Radiat Oncol, Seoul 03722, South Korea
[3] Yonsei Univ, Inst Innovat Digital Healthcare, Seoul 03722, South Korea
[4] Gangnam Severance Hosp, Dept Radiat Oncol, Seoul 06273, South Korea
[5] Korea Adv Inst Sci & Technol, Kim Jaechul Grad Sch AI, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Feature extraction; Task analysis; Biomedical imaging; Privacy; Transformers; Servers; Distance learning; Distributed learning; self-supervised learning; random permutation; vision transformer; privacy protection;
D O I
10.1109/JBHI.2024.3423797
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Despite promising advancements in deep learning in medical domains, challenges still remain owing to data scarcity, compounded by privacy concerns and data ownership disputes. Recent explorations of distributed-learning paradigms, particularly federated learning, have aimed to mitigate these challenges. However, these approaches are often encumbered by substantial communication and computational overhead, and potential vulnerabilities in privacy safeguards. Therefore, we propose a self-supervised masked sampling distillation technique called MS-DINO, tailored to the vision transformer architecture. This approach removes the need for incessant communication and strengthens privacy using a modified encryption mechanism inherent to the vision transformer while minimizing the computational burden on client-side devices. Rigorous evaluations across various tasks confirmed that our method outperforms existing self-supervised distributed learning strategies and fine-tuned baselines.
引用
收藏
页码:6180 / 6192
页数:13
相关论文
共 50 条
  • [11] Masked Autoencoders for Point Cloud Self-supervised Learning
    Pang, Yatian
    Wang, Wenxiao
    Tay, Francis E. H.
    Liu, Wei
    Tian, Yonghong
    Yuan, Li
    COMPUTER VISION - ECCV 2022, PT II, 2022, 13662 : 604 - 621
  • [12] Self-supervised approach for diabetic retinopathy severity detection using vision transformer
    Ohri, Kriti
    Kumar, Mukesh
    Sukheja, Deepak
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2024, : 165 - 183
  • [13] Exploiting temporal coherence for self-supervised visual tracking by using vision transformer
    Zhu, Wenjun
    Wang, Zuyi
    Xu, Li
    Meng, Jun
    KNOWLEDGE-BASED SYSTEMS, 2022, 251
  • [14] Vision Transformer-Based Self-supervised Learning for Ulcerative Colitis Grading in Colonoscopy
    Pyatha, Ajay
    Xu, Ziang
    Ali, Sharib
    DATA ENGINEERING IN MEDICAL IMAGING, DEMI 2023, 2023, 14314 : 102 - 110
  • [15] A Self-Supervised Learning Approach to Road Anomaly Detection Using Masked Autoencoders
    Dutta, Proma
    Podder, Kanchon Kanti
    Zhang, Jian
    Hecht, Christian
    Swarna, Surya
    Bhavsar, Parth
    INTERNATIONAL CONFERENCE ON TRANSPORTATION AND DEVELOPMENT 2024: PAVEMENTS AND INFRASTRUCTURE SYSTEMS, ICTD 2024, 2024, : 536 - 547
  • [16] Self-supervised representation learning using multimodal Transformer for emotion recognition
    Goetz, Theresa
    Arora, Pulkit
    Erick, F. X.
    Holzer, Nina
    Sawant, Shrutika
    PROCEEDINGS OF THE 8TH INTERNATIONAL WORKSHOP ON SENSOR-BASED ACTIVITY RECOGNITION AND ARTIFICIAL INTELLIGENCE, IWOAR 2023, 2023,
  • [17] Learnable Masked Tokens for Improved Transferability of Self-supervised Vision Transformers
    Hu, Hao
    Baldassarre, Federico
    Azizpour, Hossein
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT III, 2023, 13715 : 409 - 426
  • [18] MonoViT: Self-Supervised Monocular Depth Estimation with a Vision Transformer
    Zhao, Chaoqiang
    Zhang, Youmin
    Poggi, Matteo
    Tosi, Fabio
    Guo, Xianda
    Zhu, Zheng
    Huang, Guan
    Tang, Yang
    Mattoccia, Stefano
    2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV, 2022, : 668 - 678
  • [19] ATTENTION-GUIDED CONTRASTIVE MASKED IMAGE MODELING FOR TRANSFORMER-BASED SELF-SUPERVISED LEARNING
    Zhan, Yucheng
    Zhao, Yucheng
    Luo, Chong
    Zhang, Yueyi
    Sun, Xiaoyan
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2490 - 2494
  • [20] Pseudo-label enhancement for weakly supervised object detection using self-supervised vision transformer
    Yang, Kequan
    Wu, Yuanchen
    Li, Jide
    Yin, Chao
    Li, Xiaoqiang
    KNOWLEDGE-BASED SYSTEMS, 2025, 311