MS-DINO: Masked Self-Supervised Distributed Learning Using Vision Transformer

被引:1
|
作者
Park, Sangjoon [1 ,2 ,3 ]
Lee, Ik Jae [4 ]
Kim, Jun Won [4 ]
Ye, Jong Chul [5 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South Korea
[2] Yonsei Univ, Coll Med, Dept Radiat Oncol, Seoul 03722, South Korea
[3] Yonsei Univ, Inst Innovat Digital Healthcare, Seoul 03722, South Korea
[4] Gangnam Severance Hosp, Dept Radiat Oncol, Seoul 06273, South Korea
[5] Korea Adv Inst Sci & Technol, Kim Jaechul Grad Sch AI, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Feature extraction; Task analysis; Biomedical imaging; Privacy; Transformers; Servers; Distance learning; Distributed learning; self-supervised learning; random permutation; vision transformer; privacy protection;
D O I
10.1109/JBHI.2024.3423797
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Despite promising advancements in deep learning in medical domains, challenges still remain owing to data scarcity, compounded by privacy concerns and data ownership disputes. Recent explorations of distributed-learning paradigms, particularly federated learning, have aimed to mitigate these challenges. However, these approaches are often encumbered by substantial communication and computational overhead, and potential vulnerabilities in privacy safeguards. Therefore, we propose a self-supervised masked sampling distillation technique called MS-DINO, tailored to the vision transformer architecture. This approach removes the need for incessant communication and strengthens privacy using a modified encryption mechanism inherent to the vision transformer while minimizing the computational burden on client-side devices. Rigorous evaluations across various tasks confirmed that our method outperforms existing self-supervised distributed learning strategies and fine-tuned baselines.
引用
收藏
页码:6180 / 6192
页数:13
相关论文
共 50 条
  • [1] A Hierarchical Vision Transformer Using Overlapping Patch and Self-Supervised Learning
    Ma, Yaxin
    Li, Ming
    Chang, Jun
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [2] Self-Supervised Graph Transformer for Deepfake Detection
    Khormali, Aminollah
    Yuan, Jiann-Shiun
    IEEE ACCESS, 2024, 12 : 58114 - 58127
  • [3] Pattern Integration and Enhancement Vision Transformer for Self-Supervised Learning in Remote Sensing
    Lu, Kaixuan
    Zhang, Ruiqian
    Huang, Xiao
    Xie, Yuxing
    Ning, Xiaogang
    Zhang, Hanchao
    Yuan, Mengke
    Zhang, Pan
    Wang, Tao
    Liao, Tongkui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [4] SERE: Exploring Feature Self-Relation for Self-Supervised Transformer
    Li, Zhong-Yu
    Gao, Shanghua
    Cheng, Ming-Ming
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 15619 - 15631
  • [5] PatchMixing Masked Autoencoders for 3D Point Cloud Self-Supervised Learning
    Lin, Chengxing
    Xu, Wenju
    Zhu, Jian
    Nie, Yongwei
    Cai, Ruichu
    Xu, Xuemiao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 9882 - 9897
  • [6] Self-Supervised Learning Malware Traffic Classification Based on Masked Autoencoder
    Xu, Ke
    Zhang, Xixi
    Wang, Yu
    Ohtsuki, Tomoaki
    Adebisi, Bamidele
    Sari, Hikmet
    Gui, Guan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 17330 - 17340
  • [7] DatUS: Data-Driven Unsupervised Semantic Segmentation With Pretrained Self-Supervised Vision Transformer
    Kumar, Sonal
    Sur, Arijit
    Baruah, Rashmi Dutta
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (05) : 1775 - 1788
  • [8] Self-Supervised Masked Convolutional Transformer Block for Anomaly Detection
    Madan, Neelu
    Ristea, Nicolae-Catalin
    Ionescu, Radu Tudor
    Nasrollahi, Kamal
    Khan, Fahad Shahbaz
    Moeslund, Thomas B.
    Shah, Mubarak
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (01) : 525 - 542
  • [9] Multimodal Image Fusion via Self-Supervised Transformer
    Zhang, Jing
    Liu, Yu
    Liu, Aiping
    Xie, Qingguo
    Ward, Rabab
    Wang, Z. Jane
    Chen, Xun
    IEEE SENSORS JOURNAL, 2023, 23 (09) : 9796 - 9807
  • [10] ATTENTION-GUIDED CONTRASTIVE MASKED IMAGE MODELING FOR TRANSFORMER-BASED SELF-SUPERVISED LEARNING
    Zhan, Yucheng
    Zhao, Yucheng
    Luo, Chong
    Zhang, Yueyi
    Sun, Xiaoyan
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2490 - 2494